The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modificat...The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought-and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions.GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response,but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.展开更多
Freezing stress can seriously affect plant growth and development,but the mechanisms of these effects and plant responses to freezing stress require further exploration.Here,we identified a NAM,ATAF1/2,and CUC2(NAC)-f...Freezing stress can seriously affect plant growth and development,but the mechanisms of these effects and plant responses to freezing stress require further exploration.Here,we identified a NAM,ATAF1/2,and CUC2(NAC)-family transcription factor(TF),NAC056,that can promote freezing tolerance in Arabidopsis.NAC056 mRNA levels are strongly induced by freezing stress in roots,and the nac056 mutant exhibits compromised freezing tolerance.NAC056 acts positively in response to freezing by directly promoting key C-repeat-binding factor(CBF)pathway genes.Interestingly,we found that CBF1 regulates nitrate assimilation by regulating the nitrate reductase gene NIA1 in plants;therefore,NAC056–CBF1–NIA1 form a regulatory module for the assimilation of nitrate and the growth of roots under freezing stress.In addition,35S::NAC056 transgenic plants show enhanced freezing tolerance,which is partially reversed in the cbfs triple mutant.Thus,NAC056 confers freezing tolerance through the CBF pathway,mediating plant responses to balance growth and freezing stress tolerance.展开更多
基金supported by the National Transgenic Key Project of the Ministry of Agriculture of China(2016ZX08011-003)the Agricultural Science and Technology Program for Innovation Team on Identification and excavation of Elite Crop Germplasm,CAAS
文摘The engineering of plants with enhanced tolerance to abiotic stresses typically involves complex multigene networks and may therefore have a greater potential to introduce unintended effects than the genetic modification for simple monogenic traits. For this reason, it is essential to study the unintended effects in transgenic plants engineered for stress tolerance. We selected drought-and salt-tolerant transgenic wheat overexpressing the transcription factor, GmDREB1, to investigate unintended pleiotropic effects using RNA-seq analysis. We compared the transcriptome alteration of transgenic plants with that of wild-type plants subjected to salt stress as a control. We found that GmDREB1 overexpression had a minimal impact on gene expression under normal conditions.GmDREB1 overexpression resulted in transcriptional reprogramming of the salt response,but many of the genes with differential expression are known to mitigate salt stress and contribute incrementally to the enhanced stress tolerance of transgenic wheat. GmDREB1 overexpression did not activate unintended gene networks with respect to gene expression in the roots of transgenic wheat. This work is important for establishing a method of detecting unintended effects of genetic engineering and the safety of such traits with the development of marketable transgenic crops in the near future.
基金supported by the National Natural Science Foundation of China(grant nos.32371293,32171232,31500236,and 31570859)the Natural Science Foundation of Shanghai(grant no.22ZR1469500).
文摘Freezing stress can seriously affect plant growth and development,but the mechanisms of these effects and plant responses to freezing stress require further exploration.Here,we identified a NAM,ATAF1/2,and CUC2(NAC)-family transcription factor(TF),NAC056,that can promote freezing tolerance in Arabidopsis.NAC056 mRNA levels are strongly induced by freezing stress in roots,and the nac056 mutant exhibits compromised freezing tolerance.NAC056 acts positively in response to freezing by directly promoting key C-repeat-binding factor(CBF)pathway genes.Interestingly,we found that CBF1 regulates nitrate assimilation by regulating the nitrate reductase gene NIA1 in plants;therefore,NAC056–CBF1–NIA1 form a regulatory module for the assimilation of nitrate and the growth of roots under freezing stress.In addition,35S::NAC056 transgenic plants show enhanced freezing tolerance,which is partially reversed in the cbfs triple mutant.Thus,NAC056 confers freezing tolerance through the CBF pathway,mediating plant responses to balance growth and freezing stress tolerance.