Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the sof...Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.展开更多
The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.Howeve...The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach.展开更多
An ultrafast framing camera with a pulse-dilation device,a microchannel plate(MCP)imager,and an electronic imaging system were reported.The camera achieved a temporal resolution of 10 ps by using a pulse-dilation devi...An ultrafast framing camera with a pulse-dilation device,a microchannel plate(MCP)imager,and an electronic imaging system were reported.The camera achieved a temporal resolution of 10 ps by using a pulse-dilation device and gated MCP imager,and a spatial resolution of 100μm by using an electronic imaging system comprising combined magnetic lenses.The spatial resolution characteristics of the camera were studied both theoretically and experimentally.The results showed that the camera with combined magnetic lenses reduced the field curvature and acquired a larger working area.A working area with a diameter of 53 mm was created by applying four magnetic lenses to the camera.Furthermore,the camera was used to detect the X-rays produced by the laser-targeting device.The diagnostic results indicated that the width of the X-ray pulse was approximately 18 ps.展开更多
This paper introduces an intelligent computational approach for extracting salient objects fromimages and estimatingtheir distance information with PTZ (Pan-Tilt-Zoom) cameras. PTZ cameras have found wide applications...This paper introduces an intelligent computational approach for extracting salient objects fromimages and estimatingtheir distance information with PTZ (Pan-Tilt-Zoom) cameras. PTZ cameras have found wide applications innumerous public places, serving various purposes such as public securitymanagement, natural disastermonitoring,and crisis alarms, particularly with the rapid development of Artificial Intelligence and global infrastructuralprojects. In this paper, we combine Gauss optical principles with the PTZ camera’s capabilities of horizontal andpitch rotation, as well as optical zoom, to estimate the distance of the object.We present a novel monocular objectdistance estimation model based on the Focal Length-Target Pixel Size (FLTPS) relationship, achieving an accuracyrate of over 95% for objects within a 5 km range. The salient object extraction is achieved through a simplifiedconvolution kernel and the utilization of the object’s RGB features, which offer significantly faster computingspeeds compared to Convolutional Neural Networks (CNNs). Additionally, we introduce the dark channel beforethe fog removal algorithm, resulting in a 20 dB increase in image definition, which significantly benefits distanceestimation. Our system offers the advantages of stability and low device load, making it an asset for public securityaffairs and providing a reference point for future developments in surveillance hardware.展开更多
文摘Throughout the SMILE mission the satellite will be bombarded by radiation which gradually damages the focal plane devices and degrades their performance.In order to understand the changes of the CCD370s within the soft X-ray Imager,an initial characterisation of the devices has been carried out to give a baseline performance level.Three CCDs have been characterised,the two flight devices and the flight spa re.This has been carried out at the Open University in a bespo ke cleanroom measure ment facility.The results show that there is a cluster of bright pixels in the flight spa re which increases in size with tempe rature.However at the nominal ope rating tempe rature(-120℃) it is within the procure ment specifications.Overall,the devices meet the specifications when ope rating at -120℃ in 6 × 6 binned frame transfer science mode.The se rial charge transfer inefficiency degrades with temperature in full frame mode.However any charge losses are recovered when binning/frame transfer is implemented.
基金This work was funded by the National Natural Science Foundation of China(Grant No.62172132)Public Welfare Technology Research Project of Zhejiang Province(Grant No.LGF21F020014)the Opening Project of Key Laboratory of Public Security Information Application Based on Big-Data Architecture,Ministry of Public Security of Zhejiang Police College(Grant No.2021DSJSYS002).
文摘The widespread availability of digital multimedia data has led to a new challenge in digital forensics.Traditional source camera identification algorithms usually rely on various traces in the capturing process.However,these traces have become increasingly difficult to extract due to wide availability of various image processing algorithms.Convolutional Neural Networks(CNN)-based algorithms have demonstrated good discriminative capabilities for different brands and even different models of camera devices.However,their performances is not ideal in case of distinguishing between individual devices of the same model,because cameras of the same model typically use the same optical lens,image sensor,and image processing algorithms,that result in minimal overall differences.In this paper,we propose a camera forensics algorithm based on multi-scale feature fusion to address these issues.The proposed algorithm extracts different local features from feature maps of different scales and then fuses them to obtain a comprehensive feature representation.This representation is then fed into a subsequent camera fingerprint classification network.Building upon the Swin-T network,we utilize Transformer Blocks and Graph Convolutional Network(GCN)modules to fuse multi-scale features from different stages of the backbone network.Furthermore,we conduct experiments on established datasets to demonstrate the feasibility and effectiveness of the proposed approach.
基金National Natural Science Foundation of China(NSFC)(No.11775147)Guangdong Basic and Applied Basic Research Foundation(Nos.2019A1515110130 and 2024A1515011832)+1 种基金Shenzhen Key Laboratory of Photonics and Biophotonics(ZDSYS20210623092006020)Shenzhen Science and Technology Program(Nos.JCYJ20210324095007020,JCYJ20200109105201936 and JCYJ20230808105019039).
文摘An ultrafast framing camera with a pulse-dilation device,a microchannel plate(MCP)imager,and an electronic imaging system were reported.The camera achieved a temporal resolution of 10 ps by using a pulse-dilation device and gated MCP imager,and a spatial resolution of 100μm by using an electronic imaging system comprising combined magnetic lenses.The spatial resolution characteristics of the camera were studied both theoretically and experimentally.The results showed that the camera with combined magnetic lenses reduced the field curvature and acquired a larger working area.A working area with a diameter of 53 mm was created by applying four magnetic lenses to the camera.Furthermore,the camera was used to detect the X-rays produced by the laser-targeting device.The diagnostic results indicated that the width of the X-ray pulse was approximately 18 ps.
基金the Social Development Project of Jiangsu Key R&D Program(BE2022680)the National Natural Science Foundation of China(Nos.62371253,52278119).
文摘This paper introduces an intelligent computational approach for extracting salient objects fromimages and estimatingtheir distance information with PTZ (Pan-Tilt-Zoom) cameras. PTZ cameras have found wide applications innumerous public places, serving various purposes such as public securitymanagement, natural disastermonitoring,and crisis alarms, particularly with the rapid development of Artificial Intelligence and global infrastructuralprojects. In this paper, we combine Gauss optical principles with the PTZ camera’s capabilities of horizontal andpitch rotation, as well as optical zoom, to estimate the distance of the object.We present a novel monocular objectdistance estimation model based on the Focal Length-Target Pixel Size (FLTPS) relationship, achieving an accuracyrate of over 95% for objects within a 5 km range. The salient object extraction is achieved through a simplifiedconvolution kernel and the utilization of the object’s RGB features, which offer significantly faster computingspeeds compared to Convolutional Neural Networks (CNNs). Additionally, we introduce the dark channel beforethe fog removal algorithm, resulting in a 20 dB increase in image definition, which significantly benefits distanceestimation. Our system offers the advantages of stability and low device load, making it an asset for public securityaffairs and providing a reference point for future developments in surveillance hardware.