为了充分利用稀疏表示分类算法中重构残差包含的特征信息,将重构残差的波段信息反馈到测试样本中,自适应增强样本的稀疏特征提取。但反馈调整过程可能会出现特征过拟合的问题,为了进一步提高算法的稳定性和分类精度,提出了紧耦合像元生...为了充分利用稀疏表示分类算法中重构残差包含的特征信息,将重构残差的波段信息反馈到测试样本中,自适应增强样本的稀疏特征提取。但反馈调整过程可能会出现特征过拟合的问题,为了进一步提高算法的稳定性和分类精度,提出了紧耦合像元生成算法(close coupled set of pixels,CCSP)来平滑特征分布以解决过拟合问题,并最终提出了基于紧耦合像元的自适应增强类内稀疏表示高光谱图像分类方法(close coupled set of pixels-based adaptive boosting class-wise sparse representation classifier,CCSP-ABCWSRC)。在Indian Pines,University of Pavia,Salinas三个高光谱数据集上的实验结果表明,提出的算法对高光谱图像进行了稳定有效的分类并且其分类精度优于同类算法。展开更多
In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into co...In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.展开更多
In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predic...In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.展开更多
文摘为了充分利用稀疏表示分类算法中重构残差包含的特征信息,将重构残差的波段信息反馈到测试样本中,自适应增强样本的稀疏特征提取。但反馈调整过程可能会出现特征过拟合的问题,为了进一步提高算法的稳定性和分类精度,提出了紧耦合像元生成算法(close coupled set of pixels,CCSP)来平滑特征分布以解决过拟合问题,并最终提出了基于紧耦合像元的自适应增强类内稀疏表示高光谱图像分类方法(close coupled set of pixels-based adaptive boosting class-wise sparse representation classifier,CCSP-ABCWSRC)。在Indian Pines,University of Pavia,Salinas三个高光谱数据集上的实验结果表明,提出的算法对高光谱图像进行了稳定有效的分类并且其分类精度优于同类算法。
文摘In this paper, we use the method of pseudo-offset migration (POM) to complete converted wave pre-stack time migration with amplitude-preservation in an anisotropic medium. The method maps the original traces into common conversion scatter point (CCSP) gathers directly by POM, which simplifies the conventional processing procedure for converted waves. The POM gather fold and SNR are high, which is favorable for velocity analysis and especially suitable for seismic data with low SNR. We used equivalent anisotropic theory to compute anisotropic parameters. Based on the scattering wave traveltime equation in a VTI medium, the POM pseudo-offset migration in anisotropic media was deduced. By amplitude-preserving POM gather mapping, velocity analysis, stack processing, and so on, the anisotropic migration results were acquired. The forward modeling computation and actual data processing demonstrate the validity of converted wave pre-stack time migration with amplitude-preservation using the anisotropic POM method.
基金supported by the National Natural Science Foundation of China [grant number 42088101]。
文摘In recent decades,the damage and economic losses caused by climate change and extreme climate events have been increasing rapidly.Although scientists all over the world have made great efforts to understand and predict climatic variations,there are still several major problems for improving climate prediction.In 2020,the Center for Climate System Prediction Research(CCSP) was established with support from the National Natural Science Foundation of China.CCSP aims to tackle three scientific problems related to climate prediction—namely,El Ni?o-Southern Oscillation(ENSO) prediction,extended-range weather forecasting,and interannual-to-decadal climate prediction—and hence provide a solid scientific basis for more reliable climate predictions and disaster prevention.In this paper,the major objectives and scientific challenges of CCSP are reported,along with related achievements of its research groups in monsoon dynamics,land-atmosphere interaction and model development,ENSO variability,intraseasonal oscillation,and climate prediction.CCSP will endeavor to tackle key scientific problems in these areas.