Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain pro...Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex(TRiC) contains eight paralogous subunits(CCT1-8), and assists the folding of as many as 10% of cytosolic proteome.TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma,and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-β that can specifically bind to and inhibit CCT4. Anticarin-β shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-β potently impedes CCT4-mediated STAT3 maturation. Anticarin-β displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma.Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.展开更多
基金the National Natural Science Foundation of China(81903666 and 31930015)the Chinese Academy of Sciences(XDB31000000,KFJ-STS-SCYD-304,and K.C.Wong Education Foundation,China)+4 种基金the Science and Technology Department of Yunnan Province (202101AT070301,2019ZF003,202002AA100007,202003AD150008,and 2019FB103China)Project of Innovative Research Team of Yunnan Province(2019HC005China)the Department of Industry and Information Technology of Yunnan Province (2019-YT-053,China)。
文摘Unlike healthy, non-transformed cells, the proteostasis network of cancer cells is taxed to produce proteins involved in tumor development. Cancer cells have a higher dependency on molecular chaperones to maintain proteostasis. The chaperonin T-complex protein ring complex(TRiC) contains eight paralogous subunits(CCT1-8), and assists the folding of as many as 10% of cytosolic proteome.TRiC is essential for the progression of some cancers, but the roles of TRiC subunits in osteosarcoma remain to be explored. Here, we show that CCT4/TRiC is significantly correlated in human osteosarcoma,and plays a critical role in osteosarcoma cell survival. We identify a compound anticarin-β that can specifically bind to and inhibit CCT4. Anticarin-β shows higher selectivity in cancer cells than in normal cells. Mechanistically, anticarin-β potently impedes CCT4-mediated STAT3 maturation. Anticarin-β displays remarkable antitumor efficacy in orthotopic and patient-derived xenograft models of osteosarcoma.Collectively, our data uncover a key role of CCT4 in osteosarcoma, and propose a promising treatment strategy for osteosarcoma by disrupting CCT4 and proteostasis.