Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate t...Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.展开更多
目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将...目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。展开更多
基金financially supported by the National Natural Science Foundation of China(Grant No.21902046,21801071,12174092,U21A20500)Overseas Expertise Introduction Center for Discipline Innovation(D18025)+3 种基金the Natural Science Foundation of Hubei Provincial(Grant No.2018CFB171)Wuhan Science and Technology Bureau(2020010601012163)Science and Technology Research Project of Hubei Provincial Department of Education(No.D20221001)the open foundation of the State Key Laboratory of Structural Chemistry,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences
文摘Exploring high efficiency S-scheme heterojunction photocatalysts with strong redox ability for removing volatile organic compounds from the air is of great interest and importance.However,how to predict and regulate the transport of photogenerated carriers in heterojunctions is a great challenge.Here,density functional theory calculations were first used to successfully predict the formation of a CdS quantum dots/InVO_(4)atomic-layer(110)/(110)facet S-scheme heterojunction.Subsequently,a CdS quantum dots/InVO_(4)atomic-layer was synthesized by in-situ loading of CdS quantum dots with(110)facets onto the(110)facets of InVO_(4)atomic-layer.As a result of the deliberately constructed built-in electric field between the adjoining facets,we obtain a remarkably enhanced photocatalytic degradation rate for ethylene.This rate is 13.8 times that of pure CdS and 13.2 times that of pure InVO_(4).In-situ irradiated X-ray photoelectron spectroscopy,photoluminescence and time-resolved photoluminescence measurements were carried out.These experiments validate that the built-in electric field enhanced the dissociation of photoexcited excitons and the separation of free charge carriers,and results in the formation of S-scheme charge transfer pathways.The reaction mechanism of the photocatalytic C_(2)H_(4)oxidation is investigated by in-situ electron paramagnetic resonance.This work provides a mechanistic insight into the construction and optimization of semiconductor heterojunction photocatalysts for application to environmental remediation.
文摘目的探讨(1-3)-β-D葡聚糖联合降钙素原(procalcitonin,PCT)、CD4^(+)T淋巴细胞多指标在艾滋病患者马尔尼菲篮状菌感染早期诊断临床研究。方法回顾性选取我院2020年1月—2022年6月住院的120例艾滋病患者为研究对象。依据实验室结果,将其分为马尔尼菲篮状菌感染确诊组(血或组织液培育养出马尔尼菲篮状菌),简称A组(62例),及马尔尼菲篮状菌感染临床诊断组[根据临床症状、体征、血常规及(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞多指标诊断],简称B组(58例)。检测患者(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞的表达水平,采用受试者工作特征(receiver-operating characteristic,ROC)曲线下面积(area under the curve,AUC)评估上述指标联合检测对艾滋病患者感染马尔尼菲篮状菌的诊断效能。结果A组的(1-3)-β-D葡聚糖和PCT水平均高于B组,CD4^(+)T淋巴细胞个数低于B组(P<0.05);(1-3)-β-D葡聚糖、PCT、CD4^(+)T淋巴细胞联合检测的AUC为0.933,(1-3)-β-D葡聚糖单独检测的AUC是0.812,PCT单独检测的AUC为0.883,CD4^(+)T淋巴细胞单独检测的AUC是0.810,(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的AUC皆优于三项单独检测,表明(1-3)-β-D葡聚糖、PCT和CD4^(+)T淋巴细胞联合检测的诊断价值皆优于单一指标诊断,且联合检测的特异度、约登指数分别为92.43%和0.580,均高于三项单独检测。结论(1-3)-β-D葡聚糖联合PCT和CD4^(+)T淋巴细胞多指标对艾滋病马尔尼菲篮状菌感染具有非常高的临床诊断价值,能够帮助医生分析出高危风险患者,及时制定治疗方案,同时也承担预后效果的判断依据,对治疗艾滋病马尔尼菲篮状菌感染具有非常重要的研究价值。