Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteris...Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.展开更多
Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop cont...Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.展开更多
Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved...Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved “mass-spring” model with the loop model of welding power system, puts forward the critical judgment condition of droplet transition, and establishes a more accurate dynamic model for describing the short-circuit transition process. The dynamic changes of short-circuit transfer frequency, welding current and voltage, contact droplet and residual droplet equivalent radius and droplet equivalent radius at different wire feeding speeds were calculated and analyzed, and compared with the experimental results. It shows that the fluctuation of droplet displacement, velocity and wire extension length at the optimal arc starting point is the smallest. The smaller the initial liquid bridge curvature radius is, the better the stability of short-circuit transfer is.展开更多
As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety...As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety,it is necessary to carry out research on the dynamic modeling of the cracked blade and breathing crack-induced vibration mechanisms.This paper summarizes the current research status on the dynamics of cracked blade,and the related topics mainly include four aspects:crack propagation path,mechanical model of open and breathing cracks,dynamic modeling methods of cracked blades such as lumped mass model,semi-analytical model and finite element model,and dynamic characteristics of cracked blades.The review will provide valuable references for future studies on dynamics and fault diagnosis of cracked blade in aeroengine.展开更多
To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are ...To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are put forward. First, the educational robot system is abstracted to a multibody system and a general dynamic model of the educational robot is constructed by the Newton-Euler method. Then the dynamic model is simplified by a combination of components with fixed connections according to the structural characteristics of the educational robot. Secondly, in order to obtain a high efficiency simulation algorithm, based on the sparse matrix technique, the augmentation algorithm and the direct projective constraint stabilization algorithm are improved. Finally, a numerical example is given. The results show that the model and the fast algorithm are valid and effective. This study lays a dynamic foundation for realizing the simulation platform of the educational robot.展开更多
In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was estab...In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.展开更多
The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformatio...The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.展开更多
Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM ski...Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.展开更多
This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equation...This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.展开更多
Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic ...Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.展开更多
The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the up...The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the upper sections, lumped parameter model is used instead. With the combination of different models, we can get detailed distributions of gas velocity, temperature, chemical species, heat flux, etc. in the furnace, but with less CPU time. The radiation through the interfaces of each section is cons...展开更多
In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2...In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2 could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.展开更多
A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river ...A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.展开更多
In the dynamic characteristic experiment of magnetorheological( MR) damper, a strange feature which the improved Bouc-Wen model based on tanh function cannot accurately describe has been shown when MR damper is revers...In the dynamic characteristic experiment of magnetorheological( MR) damper, a strange feature which the improved Bouc-Wen model based on tanh function cannot accurately describe has been shown when MR damper is reversing or at a low speed. In order to describe this phenomenon,a new mechanicaldelay dynamic model based on the improved Bouc-Wen model has been proposed for MR damper. This new model comprehensively considers the coupling effect on the structural flexibility of MR damper and the MR effect of MR fluid. The identification results show that the new mechanical-delay dynamic model for MR damper has a good coherence with experiment whenever at low or high speed.展开更多
The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,...The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.展开更多
Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate for...Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation(ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore,dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results,while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.展开更多
Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variabl...Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.展开更多
Drilling and blasting are the two most significant operations in open pit mines that play a crucial role in downstream stages. While previous research has focused on optimizing these operations as two separate parts o...Drilling and blasting are the two most significant operations in open pit mines that play a crucial role in downstream stages. While previous research has focused on optimizing these operations as two separate parts or merely in a specific parameter, this paper proposes a system dynamic model(SDM) for drilling and blasting operations as an interactive system. In addition, some technical and economic uncertainties such as rock density, uniaxial compressive strength, bit life and operating costs are considered in this system to evaluate the different optimization results. For this purpose, Vensim simulation software is utilized as a powerful dynamic tool for both modelling and optimizing under deterministic and uncertain conditions. It is concluded that an integrated optimization as opposed to the deterministic approach can be efficiently achieved. This however is dependent on the parameters that are considered as uncertainties.展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
基金supported by the National Natural Science Foundation of China(grant no.52075414).
文摘Time-varying mesh stiffness(TVMS)is a vital internal excitation source for the spiral bevel gear(SBG)transmission system.Spalling defect often causes decrease in gear mesh stiffness and changes the dynamic characteristics of the gear system,which further increases noise and vibration.This paper aims to calculate the TVMS and establish dynamic model of SBG with spalling defect.In this study,a novel analytical model based on slice method is proposed to calculate the TVMS of SBG considering spalling defect.Subsequently,the influence of spalling defect on the TVMS is studied through a numerical simulation,and the proposed analytical model is verified by a finite element model.Besides,an 8-degrees-of-freedom dynamic model is established for SBG transmission system.Incorporating the spalling defect into TVMS,the dynamic responses of spalled SBG are analyzed.The numerical results indicate that spalling defect would cause periodic impact in time domain.Finally,an experiment is designed to verify the proposed dynamic model.The experimental results show that the spalling defect makes the response characterized by periodic impact with the rotating frequency of spalled pinion.
基金supported by the Major Science and Technology Projects of Gansu Province(Grant No.20ZD7GF011)Gansu Province Higher Education Industry Support Plan Project:Research on the Collaborative Operation of Solar Thermal Storage+Wind-Solar Hybrid Power Generation--Based on“Integrated Energy Demonstration of Wind-Solar Energy Storage in Gansu Province”(Project No.2022CYZC-34).
文摘Parallel connection of multiple inverters is an important means to solve the expansion,reserve and protection of distributed power generation,such as photovoltaics.In view of the shortcomings of traditional droop control methods such as weak anti-interference ability,low tracking accuracy of inverter output voltage and serious circulation phenomenon,a finite control set model predictive control(FCS-MPC)strategy of microgrid multiinverter parallel system based on Mixed Logical Dynamical(MLD)modeling is proposed.Firstly,the MLD modeling method is introduced logical variables,combining discrete events and continuous events to form an overall differential equation,which makes the modeling more accurate.Then a predictive controller is designed based on the model,and constraints are added to the objective function,which can not only solve the real-time changes of the control system by online optimization,but also effectively obtain a higher tracking accuracy of the inverter output voltage and lower total harmonic distortion rate(Total Harmonics Distortion,THD);and suppress the circulating current between the inverters,to obtain a good dynamic response.Finally,the simulation is carried out onMATLAB/Simulink to verify the correctness of the model and the rationality of the proposed strategy.This paper aims to provide guidance for the design and optimal control of multi-inverter parallel systems.
基金the Natural Science Foundation Project of Guizhou Province([2019]1069)Guizhou Province Cultivation Project([2017]5788-42)+1 种基金Guizhou Province Science and Technology Support Plan General Project([2022]051)Guizhou University Talent Introduction Plan((2017)28).
文摘Base on the arc phase and short-circuit phase and their relationship, the paper considers the changes of the extension of wire, the arc length, liquid bridge resistance and mass of liquid bridge, combines the improved “mass-spring” model with the loop model of welding power system, puts forward the critical judgment condition of droplet transition, and establishes a more accurate dynamic model for describing the short-circuit transition process. The dynamic changes of short-circuit transfer frequency, welding current and voltage, contact droplet and residual droplet equivalent radius and droplet equivalent radius at different wire feeding speeds were calculated and analyzed, and compared with the experimental results. It shows that the fluctuation of droplet displacement, velocity and wire extension length at the optimal arc starting point is the smallest. The smaller the initial liquid bridge curvature radius is, the better the stability of short-circuit transfer is.
基金supported by the National Natural Science Foundation of China (Grant no.11972112,12032015,12121002 and 12202368)the Natural Science Foundation of Sichuan Province (Grant Nos.2022NSFSC1997).
文摘As one of the most important parts in the engine,the structure and state of the rotating blade directly affect the normal performance of the aeroengine.In order to monitor engine crack failure and ensure flight safety,it is necessary to carry out research on the dynamic modeling of the cracked blade and breathing crack-induced vibration mechanisms.This paper summarizes the current research status on the dynamics of cracked blade,and the related topics mainly include four aspects:crack propagation path,mechanical model of open and breathing cracks,dynamic modeling methods of cracked blades such as lumped mass model,semi-analytical model and finite element model,and dynamic characteristics of cracked blades.The review will provide valuable references for future studies on dynamics and fault diagnosis of cracked blade in aeroengine.
基金Hexa-Type Elites Peak Program of Jiangsu Province(No.2008144)Qing Lan Project of Jiangsu ProvinceFund for Excellent Young Teachers of Southeast University
文摘To realize automatic modeling and dynamic simulation of the educational assembling-type robot with open structure, a general dynamic model for the educational assembling-type robot and a fast simulation algorithm are put forward. First, the educational robot system is abstracted to a multibody system and a general dynamic model of the educational robot is constructed by the Newton-Euler method. Then the dynamic model is simplified by a combination of components with fixed connections according to the structural characteristics of the educational robot. Secondly, in order to obtain a high efficiency simulation algorithm, based on the sparse matrix technique, the augmentation algorithm and the direct projective constraint stabilization algorithm are improved. Finally, a numerical example is given. The results show that the model and the fast algorithm are valid and effective. This study lays a dynamic foundation for realizing the simulation platform of the educational robot.
基金Projects (11202125, 61175038) supported by the National Natural Science Foundation of China
文摘In order to explore the influence of welding parameters and to investigate the Al alloy (AA) nugget formation process, a comprehensive model involving electrical-thermal-mechanical and metallurgical analysis was established to numerically display the resistance spot welding (RSW) process within multiple fields and understand the AA-RSW physics. A multi-disciplinary finite element method (FEM) framework and a empirical sub-model were built to analyze the affecting factors on weld nugget and the underlying nature of welding physics with dynamic simulation procedure. Specifically, a counter-intuitive phenomenon of the resistance time-variation caused by the transient inverse virtual variation (TIVV) effect was highlighted and analyzed on the basis of welding current and temperature distribution simulation. The empirical model describing the TIVV phenomenon was used for modifying the dynamic resistance simulation during the AA spot welding process. The numerical and experimental results show that the proposed multi-field FEM model agrees with the measured AA welding feature, and the modified dynamic resistance model captures the physics of nugget growth and the electrical-thermal behavior under varying welding current and fluctuating heat input.
基金Supported by National Natural Science Foundation of China(Grant No.51375424)
文摘The existence of rolling deformation area in the rolling mill system is the main characteristic which dis- tinguishes the other machinery. In order to analyze the dynamic property of roll system's flexural deformation, it is necessary to consider the transverse periodic movement of stock in the rolling deformation area which is caused by the flexural deformation movement of roll system simul- taneously. Therefore, the displacement field of roll system and flow of metal in the deformation area is described by kinematic analysis in the dynamic system. Through intro- ducing the lateral displacement function of metal in the deformation area, the dynamic variation of per unit width rolling force can be determined at the same time. Then the coupling law caused by the co-effect of rigid movement and flexural deformation of the system structural elements is determined. Furthermore, a multi-parameter coupling dynamic model of the roll system and stock is established by the principle of virtual work. More explicitly, the cou- pled motion modal analysis was made for the roll system. Meanwhile, the analytical solutions for the flexural defor- mation movement's mode shape functions of rolls are discussed. In addition, the dynamic characteristic of the lateral flow of metal in the rolling deformation area has been analyzed at the same time. The establishment ofdynamic lateral displacement function of metal in the deformation area makes the foundation for analyzing the coupling law between roll system and rolling deformation area, and provides a theoretical basis for the realization of the dynamic shape control of steel strip.
基金Supported by the National Natural Science Foundation of China(Nos.41206111,41206112)
文摘Marine ecosystem dynamic models(MEDMs) are important tools for the simulation and prediction of marine ecosystems. This article summarizes the methods and strategies used for the improvement and assessment of MEDM skill, and it attempts to establish a technical framework to inspire further ideas concerning MEDM skill improvement. The skill of MEDMs can be improved by parameter optimization(PO), which is an important step in model calibration. An effi cient approach to solve the problem of PO constrained by MEDMs is the global treatment of both sensitivity analysis and PO. Model validation is an essential step following PO, which validates the effi ciency of model calibration by analyzing and estimating the goodness-of-fi t of the optimized model. Additionally, by focusing on the degree of impact of various factors on model skill, model uncertainty analysis can supply model users with a quantitative assessment of model confi dence. Research on MEDMs is ongoing; however, improvement in model skill still lacks global treatments and its assessment is not integrated. Thus, the predictive performance of MEDMs is not strong and model uncertainties lack quantitative descriptions, limiting their application. Therefore, a large number of case studies concerning model skill should be performed to promote the development of a scientifi c and normative technical framework for the improvement of MEDM skill.
文摘This paper sets up a robotic manipulator model on slewing crane. The model can synthetically describe the dynamic behavior of the load of slewing crane in rotating, elevating and hoisting motions. The dynamic equations of the system are recursively derived by a Newton Euler method. The dynamic behavior of the load of slewing crane in rotating motion is simulated on a computer. The method of robotic dynamics to derive the dynamic equations of the swing of load is accurate and convenient and it has good regularity. The result of the study provides a base in theory on design of crane and an accurate mathematical model for controlling the swing of load.
基金supported by the National Natural Science Foundation of China (Grant No.91338201)
文摘Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.
文摘The tangentially fired utility boiler furnace is divided into several sections. The dynamic mathematical models for each section are presented. In the combustion zone, three dimensional model is used, while for the upper sections, lumped parameter model is used instead. With the combination of different models, we can get detailed distributions of gas velocity, temperature, chemical species, heat flux, etc. in the furnace, but with less CPU time. The radiation through the interfaces of each section is cons...
基金This study is sponosored by National Natural Science Foundation of China.
文摘In this paper, we give some experimental results of our study in reconstructing discrete atmospheric dynamic models from data. After a great deal of numerical experiments, we found that the logistic map, xn +1= 1-uxn2 could be used in monthly mean temperature prediction when it was approaching the chaotic region, and its predictive results were in reverse states to the practical data. This means that the nonlinear developing behavior of the monthly mean temperature system is bifurcating back into the critical chaotic states from the chaotic ones.
基金supported by Key Subject Fund of Shanghai Education Committee (No. J50702)Open Foundation of the Key Subject in Environmental Engineering of Shanghai Ocean University(No. B820609000404)Initial Foundation for Ph. D. of ShanghaiOcean University (No. B820607000402)
文摘A nutrient-phytoplankton-zooplankton-detritus (NPZD) type of marine ecosystem model was developed in this study,and was further coupled to a three-dimensional primitive-equation ocean circulation model with a river discharge model and a solar radiation model to reproduce the dynamics of the low nutrition level in the Bohai Sea (BS).The simulation results were validated by observations and it was shown that the seasonal variation in the phytoplankton biomass could be characterized by the double-peak structure,corresponding to the spring and summer blooms,respectively.It was also found that both nitrogen and phosphate declined to the lowest level after the onset of the summer bloom,since the large amounts of nutrients were exhausted by phytoplankton for photosynthesis,and the concentrations of nutrients could resume in winter after a series of the biogeochemical-physical processes.By calculating the nitrogen/phosphorus (N/P) ratio,it is easy to see that the phytoplankton dynamics is nitrogen-limited as a whole in BS,though the phosphorus limitation may occur in the Yellow River (YR) Estuary where the input of riverine nitrogen is much more than that of phosphate.
基金National Natural Science Foundations of China(Nos.10972065,11372083)
文摘In the dynamic characteristic experiment of magnetorheological( MR) damper, a strange feature which the improved Bouc-Wen model based on tanh function cannot accurately describe has been shown when MR damper is reversing or at a low speed. In order to describe this phenomenon,a new mechanicaldelay dynamic model based on the improved Bouc-Wen model has been proposed for MR damper. This new model comprehensively considers the coupling effect on the structural flexibility of MR damper and the MR effect of MR fluid. The identification results show that the new mechanical-delay dynamic model for MR damper has a good coherence with experiment whenever at low or high speed.
基金Supported by the National Science Fund for Distinguished Young Scholars of China (60925011)
文摘The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.
基金supported by the National Natural Science Foundation of China (11772186 and 11272203)
文摘Dynamic modeling for incompressible hyperelastic materials with large deformation is an important issue in biomimetic applications. The previously proposed lower-order fully parameterized absolute nodal coordinate formulation(ANCF) beam element employs cubic interpolation in the longitudinal direction and linear interpolation in the transverse direction, whereas it cannot accurately describe the large bending deformation. On this account, a novel modeling method for studying the dynamic behavior of nonlinear materials is proposed in this paper. In this formulation, a higher-order beam element characterized by quadratic interpolation in the transverse directions is used in this investigation. Based on the Yeoh model and volumetric energy penalty function, the nonlinear elastic force matrices are derived within the ANCF framework. The feasibility and availability of the Yeoh model are verified through static experiment of nonlinear incompressible materials. Furthermore,dynamic simulation of a silicone cantilever beam under the gravity force is implemented to validate the superiority of the higher-order beam element. The simulation results obtained based on the Yeoh model by employing three different ANCF beam elements are compared with the result achieved from a commercial finite element package as the reference result. It is found that the results acquired utilizing a higher-order beam element are in good agreement with the reference results,while the results obtained using a lower-order beam element are different from the reference results. In addition, the stiffening problem caused by volumetric locking can be resolved effectively by applying a higher-order beam element. It is concluded that the proposed higher-order beam element formulation has satisfying accuracy in simulating dynamic motion process of the silicone beam.
基金supported by the National High-tech R&D Program of China(863 Program)(2015AA7326042 2015AA8321471)
文摘Aiming at handling complicated maneuvers or other unpredicted emergencies for hypersonic glide vehicle tracking,three coupled dynamic models of state estimation based on the priori information between guidance variables and aerodynamics are presented. Firstly, the aerodynamic acceleration acting on the target is analyzed to reveal the essence of the target’s motion.Then three coupled structures for modeling aerodynamic parameters are developed by different ideas: the spiral model with a harmonic oscillator, the bank model with trigonometric functions of the bank angle and the guide model with the changing rule of guidance variables. Meanwhile, the comparison discussion is concluded to show the novelty and advantage of these models.Finally, a performance assessment in different simulation cases is presented and detailed analysis is revealed. The results show that the proposed models perform excellent properties. Moreover, the guide model produces the best tracking performance and the bank model shows the second; however, the spiral model does not outperform the maneuvering reentry vehicle(MaRV) model markedly.
文摘Drilling and blasting are the two most significant operations in open pit mines that play a crucial role in downstream stages. While previous research has focused on optimizing these operations as two separate parts or merely in a specific parameter, this paper proposes a system dynamic model(SDM) for drilling and blasting operations as an interactive system. In addition, some technical and economic uncertainties such as rock density, uniaxial compressive strength, bit life and operating costs are considered in this system to evaluate the different optimization results. For this purpose, Vensim simulation software is utilized as a powerful dynamic tool for both modelling and optimizing under deterministic and uncertain conditions. It is concluded that an integrated optimization as opposed to the deterministic approach can be efficiently achieved. This however is dependent on the parameters that are considered as uncertainties.