We perform the high-pressure energy dispersive x-ray diffraction experiments of nickel nanoparticle chain using a synchrotron source under quasi-hydrostatic compression up to 44.7GPa. There is no phase transition over...We perform the high-pressure energy dispersive x-ray diffraction experiments of nickel nanoparticle chain using a synchrotron source under quasi-hydrostatic compression up to 44.7GPa. There is no phase transition over the pressure range. The bulk modulus Ko, the first pressure derivative of bulk modulus K'0 and the volume Vo are calculated from the pressure-volume data using the Birch-Murnaghan equation of state. A decrease of compressibility is observed, in agreement with the Hall-Perch effect.展开更多
文摘We perform the high-pressure energy dispersive x-ray diffraction experiments of nickel nanoparticle chain using a synchrotron source under quasi-hydrostatic compression up to 44.7GPa. There is no phase transition over the pressure range. The bulk modulus Ko, the first pressure derivative of bulk modulus K'0 and the volume Vo are calculated from the pressure-volume data using the Birch-Murnaghan equation of state. A decrease of compressibility is observed, in agreement with the Hall-Perch effect.