期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
THE JOINT DISTRIBUTIONS OF SOME ACTUARIAL DIAGNOSTICS FOR THE JUMP-DIFFUSION RISK PROCESS
1
作者 吕玉华 吴荣 徐润 《Acta Mathematica Scientia》 SCIE CSCD 2010年第3期664-676,共13页
In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus... In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion. 展开更多
关键词 jump-diffusion risk process Brownian motion time of ruin ultimately leaving-time homogeneous strong Markov property
下载PDF
Optimal Control for Insurers with a Jump-diffusion Risk Process
2
作者 吴锟 肖建武 罗荣华 《Chinese Quarterly Journal of Mathematics》 2015年第4期562-569,共8页
In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and... In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown. 展开更多
关键词 HJB equation variance principle jump-diffusion process
下载PDF
On Optimal Sparse-Control Problems Governed by Jump-Diffusion Processes
3
作者 Beatrice Gaviraghi Andreas Schindele +1 位作者 Mario Annunziato Alfio Borzì 《Applied Mathematics》 2016年第16期1978-2004,共27页
A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that gov... A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework. 展开更多
关键词 jump-diffusion processes Partial Integro-Differential Fokker-Planck Equation Optimal Control Theory Nonsmooth Optimization Proximal Methods
下载PDF
Integro-Differential Equations for a Jump-Diffusion Risk Process with Dependence between Claim Sizes and Claim Intervals
4
作者 Heli Gao 《Journal of Applied Mathematics and Physics》 2016年第11期2061-2068,共8页
The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In thi... The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability. 展开更多
关键词 jump-diffusion Risk process Diffusion Geometric Brownian Motion Gerber-Shiu Function
下载PDF
Hyper-exponential jump-diffusion model under the barrier dividend strategy 被引量:1
5
作者 DONG Ying-hui CHEN Yao ZHU Hai-fei 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2015年第1期17-26,共10页
In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via marti... In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping. 展开更多
关键词 reflected jump-diffusion process barrier strategy ruin time Gerber-Shiu function hyper-exponential distribution.
下载PDF
Pricing Study on Two Kinds of Power Options in Jump-Diffusion Models with Fractional Brownian Motion and Stochastic Rate
6
作者 Jin Li Kaili Xiang Chuanyi Luo 《Applied Mathematics》 2014年第16期2426-2441,共16页
In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the... In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end. 展开更多
关键词 STOCHASTIC RATE FRACTIONAL jump-diffusion process FRACTIONAL BROWN Motion Power OPTION
下载PDF
CEV下有交易费用的回望期权的定价研究 被引量:6
7
作者 王建稳 王利伟 《数理统计与管理》 CSSCI 北大核心 2008年第3期515-519,共5页
本文在研究服从CEV过程且无交易费用的回望期权定价模型的基础上,推导出CEV下有交易费用的回望期权定价模型,并利用变量转换和二叉树方法求解,最终给出了CEV下有交易费用的回望期权的近似解。
关键词 回望期权 cev过程 二叉树法 替换法
下载PDF
CEV模型下有交易成本的期权定价 被引量:4
8
作者 秦洪元 郑振龙 《南方经济》 北大核心 2007年第9期38-45,共8页
Black&Scholes和Merton的两篇开创性论文对完全市场下无摩擦的期权定价进行了研究,而不完全市场下的期权定价一直是学界和业界都很关注的问题。假定股票价格遵循CEV过程,研究存在比例交易成本时欧式看涨期权的定价,给出了在股价遵循... Black&Scholes和Merton的两篇开创性论文对完全市场下无摩擦的期权定价进行了研究,而不完全市场下的期权定价一直是学界和业界都很关注的问题。假定股票价格遵循CEV过程,研究存在比例交易成本时欧式看涨期权的定价,给出了在股价遵循CEV过程时有交易成本的期权价格的数值计算方法,并显示了数值结果。 展开更多
关键词 cev过程 交易成本 期权 效用无差异
下载PDF
基于半离散化的CEV过程下两值期权定价研究 被引量:8
9
作者 袁国军 《系统工程学报》 CSCD 北大核心 2012年第1期19-25,共7页
研究了常弹性波动率(CEV)过程下一类两值期权定价的数值解法问题.首先根据无套利原理和Ito公式,建立了期权定价模型,得到了在该模型下期权价格所满足的偏微分方程.然后对其中的空间变量进行离散化,得到具体的半离散化差分格式,证明了该... 研究了常弹性波动率(CEV)过程下一类两值期权定价的数值解法问题.首先根据无套利原理和Ito公式,建立了期权定价模型,得到了在该模型下期权价格所满足的偏微分方程.然后对其中的空间变量进行离散化,得到具体的半离散化差分格式,证明了该差分格式的稳定性和收敛性.最后数值实验表明该算法是一个稳定收敛的算法. 展开更多
关键词 期权定价 cev过程 半离散化 稳定性 收敛性
下载PDF
CEV过程下回顾期权的定价问题研究 被引量:8
10
作者 谢赤 《系统工程学报》 CSCD 2001年第4期296-301,共6页
讨论了当基础资产遵循不变方差弹性 (CEV)过程时回顾期权的定价问题 .通过构建一个三项式模型对CEV过程进行近似化处理并利用其为回顾期权进行定价 .发现当资产价格服从 CEV过程时 。
关键词 cev过程 回顾期权 期价定价 三项式模型 股票价格
下载PDF
CEV过程下比例交易成本的期权定价模型研究 被引量:2
11
作者 袁国军 施明华 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第10期1623-1626,共4页
文章主要研究了CEV过程下比例交易成本的期权定价问题;利用无套利原理和It^o公式,建立了期权定价模型,得到了在该模型下期权价格所满足的微分方程;并且利用有限差分方法,给出具体的Crank-Ni-colson格式数值算法。
关键词 期权定价 cev过程 交易成本 有限差分
下载PDF
不变方差弹性(CEV)过程下障碍期权的定价 被引量:19
12
作者 谢赤 《管理科学学报》 CSSCI 2001年第5期13-20,共8页
论证了当基础资产遵循不变方差弹性 (constantelasticity of variance,CEV)过程时障碍期权的定价问题 ,构建了一个三项式模型来对 CEV过程进行近似化并利用其为障碍期权定价 .就标准期权而言 ,CEV与 Black- Scholes模型之间的相关量相... 论证了当基础资产遵循不变方差弹性 (constantelasticity of variance,CEV)过程时障碍期权的定价问题 ,构建了一个三项式模型来对 CEV过程进行近似化并利用其为障碍期权定价 .就标准期权而言 ,CEV与 Black- Scholes模型之间的相关量相对较小 .结论是 ,拥有一个准确的模型描述对依赖极限期权比标准期权要重要得多 . 展开更多
关键词 cev过程 障碍期权 期权定价 三项式模型 标准期权
下载PDF
CEV和B&P作用下带交易费的亚式期权定价模型 被引量:2
13
作者 乔克林 任芳玲 《经济数学》 北大核心 2011年第3期77-81,共5页
基于B-S定价模型的基础,利用Ito公式及保值策略,研究了股票价格服从CEV模型和B&P过程且存在交易费用的亚式期权的定价模型.得出了该类期权价格所满足的微分方程,并对模型做了数值分析.结论拓宽了亚式期权的研究范围,更适用于实际金... 基于B-S定价模型的基础,利用Ito公式及保值策略,研究了股票价格服从CEV模型和B&P过程且存在交易费用的亚式期权的定价模型.得出了该类期权价格所满足的微分方程,并对模型做了数值分析.结论拓宽了亚式期权的研究范围,更适用于实际金融市场. 展开更多
关键词 亚式期权 交易费用 cev模型 B&P过程 数值分析
下载PDF
CEV过程下回望期权定价的高精度收敛差分算法 被引量:2
14
作者 袁国军 《大学数学》 2012年第2期68-74,共7页
主要研究了CEV过程下一类回望期权的定价的数值解法问题.首先对期权价格所满足的微分方程中的空间变量进行半离散化处理,得到了具体的半离散化差分格式,然后证明了该差分格式具有稳定性和收敛性.数值试验表明本文算法是一个稳定收敛的算法.
关键词 回望期权 cev过程 半离散化 稳定性 收敛性
下载PDF
CEV和B&P作用下美式期权数值定价
15
作者 丁华 丁宁 《唐山师范学院学报》 2014年第5期14-17,共4页
研究不变方差弹性(CEV)模型下,股票价格在布朗过程和泊松过程(B&P)共同作用下的美式看跌期权定价问题,得到对应的变分不等方程。利用隐式有限差分格式进行数值分析,并将其应用于实例,验证了算法的有效性。
关键词 cev模型 B&P过程 美式看跌期权 隐式差分法
下载PDF
反射CEV模型与可违约债券定价 被引量:2
16
作者 崔伶俐 《电子科技》 2013年第12期23-26,共4页
研究反射不变弹性方差(CEV)过程框架下,违约回复率的建模及可违约债券风险中性价格函数的级数表示形式。进一步给出了一类特殊反射CEV过程情形:反射布朗运动下的解析价格函数。最终以反射布朗运动为例,数值说明了可违约债券风险中性价... 研究反射不变弹性方差(CEV)过程框架下,违约回复率的建模及可违约债券风险中性价格函数的级数表示形式。进一步给出了一类特殊反射CEV过程情形:反射布朗运动下的解析价格函数。最终以反射布朗运动为例,数值说明了可违约债券风险中性价格函数随违约的回复率及强度的变化趋势。 展开更多
关键词 cev过程 反射 违约回复率 可违约债券 价格函数
下载PDF
CEV过程下带交易费的多资产期权定价研究 被引量:1
17
作者 李玉萍 黎伟 《贵阳学院学报(自然科学版)》 2011年第2期22-24,共3页
多资产Black-Scholes模型成功解决了有效证券市场下的欧式期权定价问题。然而,在现实的证券市场中,股票波动率不是常数,同时投资者将面临数量可观、不容忽视的交易成本。本文在CEV过程下,利用证券组合和无套利原理,得出离散交易时间下... 多资产Black-Scholes模型成功解决了有效证券市场下的欧式期权定价问题。然而,在现实的证券市场中,股票波动率不是常数,同时投资者将面临数量可观、不容忽视的交易成本。本文在CEV过程下,利用证券组合和无套利原理,得出离散交易时间下带交易费的多资产期权定价模型。 展开更多
关键词 多资产期权 Black—Scholes模型 cev过程 交易费
下载PDF
A Decomposition of the Ruin Probability for Risk Process with Vasicek Interest Rate
18
作者 徐林 汪荣明 姚定俊 《Northeastern Mathematical Journal》 CSCD 2008年第1期45-53,共9页
In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model.... In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model. This paper focuses on the studying of the ruin problems in the above compounded process. In this compounded risk model, ruin may be caused by a claim or oscillation. We decompose the ruin probability for the compounded risk process into two probabilities: the probability that ruin caused by a claim and the probability that ruin caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When the claim sizes are exponentially distributed, the above-mentioned integro-differential equations can be reduced into a three-order partial differential equation. 展开更多
关键词 integro-differential equation jump-diffusion process ruin probability Vasicek model
下载PDF
An Actuarial Approach to Reload Option Valuation for a Non-tradable Risk Assets under Jump-diffusion Process and Stochastic Interest Rate 被引量:4
19
作者 Cong-cong XU Zuo-liang XU 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2018年第3期451-468,共18页
We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approa... We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approach to the European vanilla option for non-tradable assets. The formulas of the actuarial approach to the reload option are derived from the fair premium principle and the obtained results are arbitrage. Numerical experiments are conducted to analyze the effects of different parameters on the results of valuation as well as their differences from those obtained by the no-arbitrage approach. Finally, we give the valuations of the reload options under different parameters. 展开更多
关键词 Non-tradable assets reload option actuarial approach jump-diffusion processes stochastic inter-est rate
原文传递
Upside and downside correlated jump risk premia of currency options and expected returns
20
作者 Jie‑Cao He Hsing‑Hua Chang +1 位作者 Ting‑Fu Chen Shih‑Kuei Lin 《Financial Innovation》 2023年第1期2267-2324,共58页
This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency ma... This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency market and the current models,a correlated asymmetric jump model is proposed to capture the co-movement of the correlated jump risks for the three rates and identify the correlated jump risk premia.The likelihood ratio test results show that the new model performs best in 1-,3-,6-,and 12-month maturities.The in-and out-of-sample test results indicate that the new model can capture more risk factors with relatively small pricing errors.Finally,the risk factors captured by the new model can explain the exchange rate fluctuations for various economic events. 展开更多
关键词 jump-diffusion process Currency option Risk premia Correlated jumps
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部