In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus...In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.展开更多
In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and...In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.展开更多
A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that gov...A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.展开更多
The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In thi...The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability.展开更多
In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via marti...In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping.展开更多
In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the...In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end.展开更多
In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model....In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model. This paper focuses on the studying of the ruin problems in the above compounded process. In this compounded risk model, ruin may be caused by a claim or oscillation. We decompose the ruin probability for the compounded risk process into two probabilities: the probability that ruin caused by a claim and the probability that ruin caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When the claim sizes are exponentially distributed, the above-mentioned integro-differential equations can be reduced into a three-order partial differential equation.展开更多
We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approa...We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approach to the European vanilla option for non-tradable assets. The formulas of the actuarial approach to the reload option are derived from the fair premium principle and the obtained results are arbitrage. Numerical experiments are conducted to analyze the effects of different parameters on the results of valuation as well as their differences from those obtained by the no-arbitrage approach. Finally, we give the valuations of the reload options under different parameters.展开更多
This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency ma...This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency market and the current models,a correlated asymmetric jump model is proposed to capture the co-movement of the correlated jump risks for the three rates and identify the correlated jump risk premia.The likelihood ratio test results show that the new model performs best in 1-,3-,6-,and 12-month maturities.The in-and out-of-sample test results indicate that the new model can capture more risk factors with relatively small pricing errors.Finally,the risk factors captured by the new model can explain the exchange rate fluctuations for various economic events.展开更多
基金Supported by the National Natural Sci-ence Foundations of China (10271062 and 10471119)the Natural Science Foundation of Shandong Province(Y2004A06, Y2008A12, and ZR2009AL015)+1 种基金the Science Foundations of Shandong Provincial Education Department (J07yh05)the Science Foundations of Qufu Normal University (XJ0713, Bsqd200517)
文摘In this article, the joint distributions of several actuarial diagnostics which are important to insurers' running for the jump-diffusion risk process are examined. They include the ruin time, the time of the surplus process leaving zero ultimately (simply, the ultimately leaving-time), the surplus immediately prior to ruin, the supreme profits before ruin, the supreme profits and deficit until it leaves zero ultimately and so on. The explicit expressions for their distributions are obtained mainly by the various properties of Levy process, such as the homogeneous strong Markov property and the spatial homogeneity property etc, moveover, the many properties for Brownian motion.
基金Supported by the Humanity and Social Science Foundation of Ministry of Education of China(10YJC790296)Supported by the National Natural Science Foundation of China(71073020)
文摘In this paper, the optimal XL-reinsurance of an insurer with jump-diffusion risk process is studied. With the assumptions that the risk process is a compound Possion process perturbed by a standard Brownian motion and the reinsurance premium is calculated according to the variance principle, the implicit expression of the priority and corresponding value function when the utility function is exponential are obtained. At last, the value function is argued, the properties of the priority about parameters are discussed and numerical results of the priority for various claim-size distributions are shown.
文摘A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.
文摘The classical Poisson risk model in ruin theory assumed that the interarrival times between two successive claims are mutually independent, and the claim sizes and claim intervals are also mutually independent. In this paper, we modify the classical Poisson risk model to describe the surplus process of an insurance portfolio. We consider a jump-diffusion risk process compounded by a geometric Brownian motion, and assume that the claim sizes and claim intervals are dependent. Using the properties of conditional expectation, we establish integro-differential equations for the Gerber-Shiu function and the ultimate ruin probability.
基金Supported by the Natural Science Foundation of Jiangsu Province(BK20130260)the National Natural Science Foundation of China(11301369)the Postdoctoral Science Foundation of China(2013M540371)
文摘In this paper, we consider a hyper-exponential jump-diffusion model with a constant dividend barrier. Explicit solutions for the Laplace transform of the ruin time, and the Gerber- Shiu function are obtained via martingale stopping.
文摘In this paper, under the assumption that the exchange rate follows the extended Vasicek model, the pricing of the reset option in FBM model is investigated. Some interesting themes such as closed-form formulas for the reset option with a single reset date and the phenomena of delta of the reset jumps existing in the reset option during the reset date are discussed. The closed-form formulae of pricing for two kinds of power options are derived in the end.
基金The NNSF(10671072,10726075)of Chinathe Doctoral Program Foundation(20060269016)of the Ministry of Education of Chinathe National Basic Research Program(973 Program,2007CB814904)of China.
文摘In this paper, it is assumed that an insurer with a jump-diffusion risk process would invest its surplus in a bond market, and the interest structure of the bond market is assumed to follow the Vasicek interest model. This paper focuses on the studying of the ruin problems in the above compounded process. In this compounded risk model, ruin may be caused by a claim or oscillation. We decompose the ruin probability for the compounded risk process into two probabilities: the probability that ruin caused by a claim and the probability that ruin caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When the claim sizes are exponentially distributed, the above-mentioned integro-differential equations can be reduced into a three-order partial differential equation.
基金Supported by the National Natural Science Foundation of China(No.11571365,11171349)
文摘We use an actuarial approach to estimate the valuation of the reload option for a non-tradable risk asset under the jump-diffusion processes and Hull-White interest rate. We verify the validity of the actuarial approach to the European vanilla option for non-tradable assets. The formulas of the actuarial approach to the reload option are derived from the fair premium principle and the obtained results are arbitrage. Numerical experiments are conducted to analyze the effects of different parameters on the results of valuation as well as their differences from those obtained by the no-arbitrage approach. Finally, we give the valuations of the reload options under different parameters.
文摘This research explores upside and downside jumps in the dynamic processes of three rates:domestic interest rates,foreign interest rates,and exchange rates.To fill the gap between the asymmetric jump in the currency market and the current models,a correlated asymmetric jump model is proposed to capture the co-movement of the correlated jump risks for the three rates and identify the correlated jump risk premia.The likelihood ratio test results show that the new model performs best in 1-,3-,6-,and 12-month maturities.The in-and out-of-sample test results indicate that the new model can capture more risk factors with relatively small pricing errors.Finally,the risk factors captured by the new model can explain the exchange rate fluctuations for various economic events.