东北地区处于我国最高纬度地区,是全球气候变化最敏感的区域之一,研究东北地区净生态系统生产力对气候变化的响应,对阐明北半球中高纬度陆地生态系统碳源汇格局具有重要意义。基于CEVSA(Carbon Exchange between Vegetation,Soil and At...东北地区处于我国最高纬度地区,是全球气候变化最敏感的区域之一,研究东北地区净生态系统生产力对气候变化的响应,对阐明北半球中高纬度陆地生态系统碳源汇格局具有重要意义。基于CEVSA(Carbon Exchange between Vegetation,Soil and Atomasphere)模型,对1961—2010年东北地区净生态系统生产力NEP的时空格局及变化趋势进行分析,并探讨了气候变化与区域碳源汇的关系。结果表明:(1)1961—2010年,东北地区年NEP总量在-0.094PgC/a—0.117PgC/a之间波动,年平均0.026PgC/a,占全国NEP总量的15%—37%。过去50年东北区域NEP没有明显的线性变化趋势,20世纪80年代碳吸收量最高,20世纪90年代后碳吸收量开始下降。(2)东北地区NEP的空间分布呈现出东部高,西部和中部低,北部高,南部低的空间格局。过去50年来,碳源区向大气释放的碳量在减少,碳汇区从大气吸收的碳也在减少。(3)NEP的年际变化与温度呈负相关(r=-0.343,P<0.05),与降水呈显著正相关(r=0.859,P<0.01),东北地区NEP和年降水量的变化规律基本一致,即同期上升或达到最高值,温度和降水共同作用导致东北地区NEP的年际变化,而年降水量的变化对NEP年际变化起主要作用。在空间上,东北地区NEP与降水呈极显著正相关(P<0.01)的面积占研究区域总面积的91.5%,与温度呈显著负相关(P<0.05)的面积占31.6%,降水也是决定NEP空间分布的最主要因子。(4)升温伴随降水增加导致1961—1990年NEP呈增加趋势,而其后升温伴随降水减少则是近20年东北区域碳汇能力减弱的重要原因。展开更多
水分利用效率是深入理解生态系统水碳循环耦合关系的重要指标。西南高山地区是响应气候变化的重点区域,研究西南高山地区水分利用效率动态及其对气候变化的响应,对于评估区域碳水耦合关系及对全球气候变化的响应具有重要意义。应用生态...水分利用效率是深入理解生态系统水碳循环耦合关系的重要指标。西南高山地区是响应气候变化的重点区域,研究西南高山地区水分利用效率动态及其对气候变化的响应,对于评估区域碳水耦合关系及对全球气候变化的响应具有重要意义。应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地区水分利用效率(Water use efficiency,WUE)的时空变化,分析了其对气候变化的响应。结果表明:(1)西南高山地区1954—2010年水分利用效率均值为1.13 g C mm-1m-2。3种主要植被类型草地、常绿针叶林和常绿阔叶林的WUE分别为1.35、1.14、0.99 g C mm-1m-2。在空间分布上,WUE与海拔显著正相关(r=0.156,P<0.05),而与温度则显著负相关(r=-0.386,P<0.01)。(2)在时间尺度上,1954—2010年西南高山地区整体WUE降低趋势显著(P<0.01),变动区间为0.83-1.46g C mm-1m-2,平均每年下降0.006g C mm-1m-2。整体WUE年际变化与温度呈显著负相关(r=-0.727,P<0.01),与降水量相关性不显著;整体WUE下降主要原因是温度上升引起的ET增加速率大于NPP增加速率。(3)1954—2010年西南高山地区3种主要植被类型草地、常绿针叶林及常绿阔叶林WUE均显著下降(P<0.01),下降速度分别为-1.03×10-2、-6.17×10-3、-1.37×10-3g C mm-1m-2a-1。西南高山地区76.3%格点WUE年际变化与温度显著负相关(P<0.05),34.1%格点WUE年际变化与降水量显著正相关(P<0.05)。草地和常绿针叶林WUE年际变化与温度显著负相关(r=-0.889,P<0.01;r=-0.863,P<0.01),与降水量相关性不显著。由于西南高山地区降水较为丰富,且过去57年降水变化不显著,因此该地区WUE的时空格局主要受温度变化的影响。1954—2010年期间温度升高造成的ET增加显著高于NPP的增加是该地区WUE下降的主要原因。未来需要获取更高空间分辨率的气候、土壤、植被数据,从而更加准确和精确地模拟西南高山地区水碳循环及其耦合关系对气候变化的响应。展开更多
中国陆地生态系统在全球碳循环中发挥着重要作用,植被净初级生产力(NPP)是重要碳循环分量。但对中国植被NPP未来变化趋势、稳定性及应对气候变化机制的研究尚少见报道。本文应用前期发展的生态系统过程模型CEVSA-RS,分别模拟了RCP4.5和R...中国陆地生态系统在全球碳循环中发挥着重要作用,植被净初级生产力(NPP)是重要碳循环分量。但对中国植被NPP未来变化趋势、稳定性及应对气候变化机制的研究尚少见报道。本文应用前期发展的生态系统过程模型CEVSA-RS,分别模拟了RCP4.5和RCP8.5气候情景下2006—2099年中国植被NPP,利用分段线性回归分析NPP年际变化转折点,采用滑动窗口法分析NPP稳定性的变化及气温和降水的影响。结果表明:(1)中国植被NPP在RCP4.5和RCP8.5气候情景下的总量分别为4.41 Pg C a^(-1)和4.40 Pg C a^(-1),季风区分别贡献了总量的72.8%和73.4%。(2)两种情景下NPP年际变化均为先增后减,转折点分别为2062年和2055年;转折年份之前NPP分别以5.3 g C m^(-2)10a^(-1)、6.5 g Cm^(-2)10a^(-1)显著增加,后以前期的4.28倍和2.57倍速率下降。(3)两种气候情景下滑动窗口计算的NPP稳定性分别以-2.9%10a^(-1)和-4.3%10a^(-1)的速率显著下降。(4)RCP4.5和RCP8.5情景下,气温显著升高,干旱指数显著下降,饱和水汽压差显著升高,全国趋向暖干化。(5)降水稳定性的降低主导着温带季风区NPP稳定性的降低,而气温稳定性的降低主导着青藏高原区NPP稳定性的降低。本文结果表明,未来气候系统的稳定性降低、气候趋向暖干化将导致全国植被NPP不升反降。因此,积极开展减缓和适应气候变化行动,如双碳行动,具有重要的科学和现实意义。展开更多
植被降水利用效率(precipitation use efficiency,PUE)是反映生态系统水、碳循环相互关系的重要指标。该文利用GLOPEM-CEVSA模型模拟了青藏高原2000-2008年植被净初级生产力(net primary production,NPP),以97个野外草地样点实测地上净...植被降水利用效率(precipitation use efficiency,PUE)是反映生态系统水、碳循环相互关系的重要指标。该文利用GLOPEM-CEVSA模型模拟了青藏高原2000-2008年植被净初级生产力(net primary production,NPP),以97个野外草地样点实测地上净初级生产力(above-ground net primary productivity,ANPP)对模拟NPP进行验证,模拟NPP与ANPP线性显著相关(R2=0.49,p<0.001)。利用降水量空间插值数据,分析了近9年青藏高原植被PUE的空间分布、主要植被类型的PUE及其与降水量之间的变化关系。结果表明:2000-2008年青藏高原地区植被年平均PUE沿东南向西北递减,降水量和气温对植被PUE有着重要的影响;PUE在不同植被类型间差异较大,其中农田PUE最高,高寒草甸PUE高于高寒草原。在不同降水区域植被PUE与降水量的关系不同,降水量低于90mm的区域,植被PUE值最低((0.026±0.190)gC·m-2·mm-1,平均值±标准偏差)、波动最大(变异系数CV=721%),与降水量和气温不相关(p=0.38)。降水量为90-300mm的地区,植被PUE较低((0.029±0.074)gC·m-2·mm-1,平均值±标准偏差)、波动较大(CV=252%),与降水量和气温显著相关(p<0.001),降水量和气温能够解释PUE空间变化的43.4%,其中降水量的影响是气温的1.7倍。降水量为300-650mm的区域占整个研究区的45%,主要植被类型为高寒草原,植被PUE较高((0.123±0.191)gC·m-2·mm-1,平均值±标准偏差),CV为155%;植被PUE的空间变化与降水量和气温极显著相关(p<0.001),降水量和气温能够解释植被PUE空间变化的97.8%,但以气温影响为主导,其影响是降水量的1.5倍。降水量为650mm的区域,植被PUE达到最高(0.26gC·m-2·mm-1)。降水量为650-845mm的区域主要是西藏林芝地区,植被以常绿针叶林为主,PUE最高((0.210±0.246)gC·m-2·mm-1,平均值±标准偏差)、波动最小(CV=117%);降水量和气温可解释植被PUE空间变化的93.1%(p<0.001),降水量的影响是气温的3.5倍,但其影响为负。展开更多
西南高山地区生态系统类型丰富、地形复杂,是响应全球气候变化的重点区域,对全球气候变化具有重要的指示作用。研究应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地...西南高山地区生态系统类型丰富、地形复杂,是响应全球气候变化的重点区域,对全球气候变化具有重要的指示作用。研究应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地区土壤有机碳(Soil Organic Carbon,SOC)的时空变化,分析了其对气候变化的响应。结果表明:1西南高山地区1954—2010年平均土壤有机碳密度为14.16 kg C·m-2,在空间分布上,SOC密度自东南向西北递增,与温度显著负相关(r=-0.447,P【0.01),而与降水量相关性不显著;2西南高山地区1954—2010年SOC总量变动范围为6.95~7.64 Pg C,增加趋势显著(P【0.05),平均每年增加0.013 Pg C,土壤有机碳密度平均增加26.94 g C·m-2;3常绿针叶林、常绿阔叶林和草地SOC密度增加趋势均显著,除常绿阔叶林SOC密度与温度相关性不显著外,其他两种植被类型SOC都与年平均温度显著正相关(草地:r=0.527,P【0.01;常绿针叶林:r=0.501,P【0.01),且3种植被类型SOC与年降水量均相关性不显著;4由于作为土壤有机碳输入的凋落物产生量对温度不如异养呼吸敏感,所以未来升温条件下,土壤有机碳储量的增速减缓或者呈下降趋势。展开更多
文摘东北地区处于我国最高纬度地区,是全球气候变化最敏感的区域之一,研究东北地区净生态系统生产力对气候变化的响应,对阐明北半球中高纬度陆地生态系统碳源汇格局具有重要意义。基于CEVSA(Carbon Exchange between Vegetation,Soil and Atomasphere)模型,对1961—2010年东北地区净生态系统生产力NEP的时空格局及变化趋势进行分析,并探讨了气候变化与区域碳源汇的关系。结果表明:(1)1961—2010年,东北地区年NEP总量在-0.094PgC/a—0.117PgC/a之间波动,年平均0.026PgC/a,占全国NEP总量的15%—37%。过去50年东北区域NEP没有明显的线性变化趋势,20世纪80年代碳吸收量最高,20世纪90年代后碳吸收量开始下降。(2)东北地区NEP的空间分布呈现出东部高,西部和中部低,北部高,南部低的空间格局。过去50年来,碳源区向大气释放的碳量在减少,碳汇区从大气吸收的碳也在减少。(3)NEP的年际变化与温度呈负相关(r=-0.343,P<0.05),与降水呈显著正相关(r=0.859,P<0.01),东北地区NEP和年降水量的变化规律基本一致,即同期上升或达到最高值,温度和降水共同作用导致东北地区NEP的年际变化,而年降水量的变化对NEP年际变化起主要作用。在空间上,东北地区NEP与降水呈极显著正相关(P<0.01)的面积占研究区域总面积的91.5%,与温度呈显著负相关(P<0.05)的面积占31.6%,降水也是决定NEP空间分布的最主要因子。(4)升温伴随降水增加导致1961—1990年NEP呈增加趋势,而其后升温伴随降水减少则是近20年东北区域碳汇能力减弱的重要原因。
文摘水分利用效率是深入理解生态系统水碳循环耦合关系的重要指标。西南高山地区是响应气候变化的重点区域,研究西南高山地区水分利用效率动态及其对气候变化的响应,对于评估区域碳水耦合关系及对全球气候变化的响应具有重要意义。应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地区水分利用效率(Water use efficiency,WUE)的时空变化,分析了其对气候变化的响应。结果表明:(1)西南高山地区1954—2010年水分利用效率均值为1.13 g C mm-1m-2。3种主要植被类型草地、常绿针叶林和常绿阔叶林的WUE分别为1.35、1.14、0.99 g C mm-1m-2。在空间分布上,WUE与海拔显著正相关(r=0.156,P<0.05),而与温度则显著负相关(r=-0.386,P<0.01)。(2)在时间尺度上,1954—2010年西南高山地区整体WUE降低趋势显著(P<0.01),变动区间为0.83-1.46g C mm-1m-2,平均每年下降0.006g C mm-1m-2。整体WUE年际变化与温度呈显著负相关(r=-0.727,P<0.01),与降水量相关性不显著;整体WUE下降主要原因是温度上升引起的ET增加速率大于NPP增加速率。(3)1954—2010年西南高山地区3种主要植被类型草地、常绿针叶林及常绿阔叶林WUE均显著下降(P<0.01),下降速度分别为-1.03×10-2、-6.17×10-3、-1.37×10-3g C mm-1m-2a-1。西南高山地区76.3%格点WUE年际变化与温度显著负相关(P<0.05),34.1%格点WUE年际变化与降水量显著正相关(P<0.05)。草地和常绿针叶林WUE年际变化与温度显著负相关(r=-0.889,P<0.01;r=-0.863,P<0.01),与降水量相关性不显著。由于西南高山地区降水较为丰富,且过去57年降水变化不显著,因此该地区WUE的时空格局主要受温度变化的影响。1954—2010年期间温度升高造成的ET增加显著高于NPP的增加是该地区WUE下降的主要原因。未来需要获取更高空间分辨率的气候、土壤、植被数据,从而更加准确和精确地模拟西南高山地区水碳循环及其耦合关系对气候变化的响应。
文摘中国陆地生态系统在全球碳循环中发挥着重要作用,植被净初级生产力(NPP)是重要碳循环分量。但对中国植被NPP未来变化趋势、稳定性及应对气候变化机制的研究尚少见报道。本文应用前期发展的生态系统过程模型CEVSA-RS,分别模拟了RCP4.5和RCP8.5气候情景下2006—2099年中国植被NPP,利用分段线性回归分析NPP年际变化转折点,采用滑动窗口法分析NPP稳定性的变化及气温和降水的影响。结果表明:(1)中国植被NPP在RCP4.5和RCP8.5气候情景下的总量分别为4.41 Pg C a^(-1)和4.40 Pg C a^(-1),季风区分别贡献了总量的72.8%和73.4%。(2)两种情景下NPP年际变化均为先增后减,转折点分别为2062年和2055年;转折年份之前NPP分别以5.3 g C m^(-2)10a^(-1)、6.5 g Cm^(-2)10a^(-1)显著增加,后以前期的4.28倍和2.57倍速率下降。(3)两种气候情景下滑动窗口计算的NPP稳定性分别以-2.9%10a^(-1)和-4.3%10a^(-1)的速率显著下降。(4)RCP4.5和RCP8.5情景下,气温显著升高,干旱指数显著下降,饱和水汽压差显著升高,全国趋向暖干化。(5)降水稳定性的降低主导着温带季风区NPP稳定性的降低,而气温稳定性的降低主导着青藏高原区NPP稳定性的降低。本文结果表明,未来气候系统的稳定性降低、气候趋向暖干化将导致全国植被NPP不升反降。因此,积极开展减缓和适应气候变化行动,如双碳行动,具有重要的科学和现实意义。
文摘植被降水利用效率(precipitation use efficiency,PUE)是反映生态系统水、碳循环相互关系的重要指标。该文利用GLOPEM-CEVSA模型模拟了青藏高原2000-2008年植被净初级生产力(net primary production,NPP),以97个野外草地样点实测地上净初级生产力(above-ground net primary productivity,ANPP)对模拟NPP进行验证,模拟NPP与ANPP线性显著相关(R2=0.49,p<0.001)。利用降水量空间插值数据,分析了近9年青藏高原植被PUE的空间分布、主要植被类型的PUE及其与降水量之间的变化关系。结果表明:2000-2008年青藏高原地区植被年平均PUE沿东南向西北递减,降水量和气温对植被PUE有着重要的影响;PUE在不同植被类型间差异较大,其中农田PUE最高,高寒草甸PUE高于高寒草原。在不同降水区域植被PUE与降水量的关系不同,降水量低于90mm的区域,植被PUE值最低((0.026±0.190)gC·m-2·mm-1,平均值±标准偏差)、波动最大(变异系数CV=721%),与降水量和气温不相关(p=0.38)。降水量为90-300mm的地区,植被PUE较低((0.029±0.074)gC·m-2·mm-1,平均值±标准偏差)、波动较大(CV=252%),与降水量和气温显著相关(p<0.001),降水量和气温能够解释PUE空间变化的43.4%,其中降水量的影响是气温的1.7倍。降水量为300-650mm的区域占整个研究区的45%,主要植被类型为高寒草原,植被PUE较高((0.123±0.191)gC·m-2·mm-1,平均值±标准偏差),CV为155%;植被PUE的空间变化与降水量和气温极显著相关(p<0.001),降水量和气温能够解释植被PUE空间变化的97.8%,但以气温影响为主导,其影响是降水量的1.5倍。降水量为650mm的区域,植被PUE达到最高(0.26gC·m-2·mm-1)。降水量为650-845mm的区域主要是西藏林芝地区,植被以常绿针叶林为主,PUE最高((0.210±0.246)gC·m-2·mm-1,平均值±标准偏差)、波动最小(CV=117%);降水量和气温可解释植被PUE空间变化的93.1%(p<0.001),降水量的影响是气温的3.5倍,但其影响为负。
文摘西南高山地区生态系统类型丰富、地形复杂,是响应全球气候变化的重点区域,对全球气候变化具有重要的指示作用。研究应用生态系统模型CEVSA(Carbon Exchange between Vegetation,Soil,and the Atmosphere)估算了1954—2010年西南高山地区土壤有机碳(Soil Organic Carbon,SOC)的时空变化,分析了其对气候变化的响应。结果表明:1西南高山地区1954—2010年平均土壤有机碳密度为14.16 kg C·m-2,在空间分布上,SOC密度自东南向西北递增,与温度显著负相关(r=-0.447,P【0.01),而与降水量相关性不显著;2西南高山地区1954—2010年SOC总量变动范围为6.95~7.64 Pg C,增加趋势显著(P【0.05),平均每年增加0.013 Pg C,土壤有机碳密度平均增加26.94 g C·m-2;3常绿针叶林、常绿阔叶林和草地SOC密度增加趋势均显著,除常绿阔叶林SOC密度与温度相关性不显著外,其他两种植被类型SOC都与年平均温度显著正相关(草地:r=0.527,P【0.01;常绿针叶林:r=0.501,P【0.01),且3种植被类型SOC与年降水量均相关性不显著;4由于作为土壤有机碳输入的凋落物产生量对温度不如异养呼吸敏感,所以未来升温条件下,土壤有机碳储量的增速减缓或者呈下降趋势。