To achieve hydrodynamic design excellence in Autonomous Underwater Vehicles(AUVs)largely depends on the accurate prediction of lift and drag forces.The study presents Computational Fluid Dynamics(CFD)-based lift and d...To achieve hydrodynamic design excellence in Autonomous Underwater Vehicles(AUVs)largely depends on the accurate prediction of lift and drag forces.The study presents Computational Fluid Dynamics(CFD)-based lift and drag estimations of a novel torpedo-shaped flight-style AUV with bow-wings.The horizontal bow-wings are provided to accommodate the electromagnetic arrays used to perform the cable detection and tracking operations near the seabed.The hydrodynamic performance of the AUV due to addition of these horizontal bow-wings is required to be investigated,particularly at the initial design stage.Hence,CFD techniques are employed to compute the lift and drag forces observed by the flight-style AUV,maneuvering underwater at different angles of attack and varying speeds.The Reynolds-Averaged Navier-Stokes Equations(RANSE)closure is achieved by employing the modified k-ϵ model and Two-Scale Wall Function(2-SWF)approach is used for boundary layer treatment.Further,the study also highlights the unique mesh refinement and solution-adaptive meshing techniques to perform the CFD simulations in Solidworks Flow Simulation(SWFS)environment.The drag polar curve for flight-style AUV with and without bow-wings is generated using the computed lift and drag coefficients.The curve provided essential insights for achieving hydrodynamically efficient and optimized AUV design.From the drag polar curve,it is revealed that due to horizontal bow-wings,the flight-style AUV is capable to generate higher lift with less drag and thus,it gives better lift-to-drag ratio compared to the AUV without bow-wings.Moreover,simulated results of axial drag observed by the AUV have also been compared with free-running experimental results and are found in good agreement.展开更多
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds num...Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.展开更多
Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady ...Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).展开更多
The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow f...The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.展开更多
In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this o...In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.展开更多
Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to s...Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.展开更多
The paper presents the analysis of a human evacuation from a higher education building located in Iassy,Romania,by means of engineering techniques to approach fire safety.Because in Romania(as in other European countr...The paper presents the analysis of a human evacuation from a higher education building located in Iassy,Romania,by means of engineering techniques to approach fire safety.Because in Romania(as in other European countries)fire safety design of buildings is prescriptive and not performance-based,a fire safety engineering approach arouse great interest in many countries such as the U.S.A.,Australia,New Zealand,England,Sweden,Finland,etc.This paper is based on the assumption of starting a fire in the space of a hall for festivities,located on the ground floor of the building,near two human evacuation routes;We consider two building evacuation scenarios:two exits and,respectively,just one exit(assuming that the second would be accidentally blocked).展开更多
A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid ...A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.展开更多
This work focuses on the development and implementation of a simulation-based approach for the detection of partial and extended blockages within an edible oil pipeline system. Blockages, whether partial or extended, ...This work focuses on the development and implementation of a simulation-based approach for the detection of partial and extended blockages within an edible oil pipeline system. Blockages, whether partial or extended, pose a significant operational and safety risks. This study employs computational fluid dynamics (CFD) simulations to model the flow behaviour of edible oil through pipeline under varying conditions. It leverages advanced computational fluid dynamics (CFD) simulations to analyze pressure, velocity, and temperature variations along the pipeline. By simulating scenarios with different blockage characteristics, there is establishment of distinctive patterns indicative of partial and extended obstructions. Through extensive analysis of simulation data, sensing element, and monitoring system, processing signal input and response output, the system can accurately pinpoint the location and severity of blockages, providing crucial insights for timely intervention. The detection system represents a significant advancement in pipeline monitoring technology, offering a proactive and accurate approach to identify blockages and mitigate potential risks and ensure the uninterrupted flow of edible oil, thereby enabling timely intervention and maintenance.展开更多
At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cycli...At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.展开更多
In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is con...In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.展开更多
A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorptio...A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.展开更多
Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding app...Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.展开更多
基金supported in part by the National Natural Science Foundation of China(Grant Nos.52131101 and 52071153)in part by Hubei Natural Science Foundation for Innovation Groups(Grant No.2021CFA026).
文摘To achieve hydrodynamic design excellence in Autonomous Underwater Vehicles(AUVs)largely depends on the accurate prediction of lift and drag forces.The study presents Computational Fluid Dynamics(CFD)-based lift and drag estimations of a novel torpedo-shaped flight-style AUV with bow-wings.The horizontal bow-wings are provided to accommodate the electromagnetic arrays used to perform the cable detection and tracking operations near the seabed.The hydrodynamic performance of the AUV due to addition of these horizontal bow-wings is required to be investigated,particularly at the initial design stage.Hence,CFD techniques are employed to compute the lift and drag forces observed by the flight-style AUV,maneuvering underwater at different angles of attack and varying speeds.The Reynolds-Averaged Navier-Stokes Equations(RANSE)closure is achieved by employing the modified k-ϵ model and Two-Scale Wall Function(2-SWF)approach is used for boundary layer treatment.Further,the study also highlights the unique mesh refinement and solution-adaptive meshing techniques to perform the CFD simulations in Solidworks Flow Simulation(SWFS)environment.The drag polar curve for flight-style AUV with and without bow-wings is generated using the computed lift and drag coefficients.The curve provided essential insights for achieving hydrodynamically efficient and optimized AUV design.From the drag polar curve,it is revealed that due to horizontal bow-wings,the flight-style AUV is capable to generate higher lift with less drag and thus,it gives better lift-to-drag ratio compared to the AUV without bow-wings.Moreover,simulated results of axial drag observed by the AUV have also been compared with free-running experimental results and are found in good agreement.
基金National Natural Science Foundation of China (No.50435030)
文摘Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 pm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
文摘Many fishes use undulatory fin to propel themselves in the underwater environment. These locomotor mechanisms have a popular interest to many researchers. In the present study, we perform a three-dimensional unsteady computation of an undulatory mechanical fin that is driven by Shape Memory Alloy (SMA). The objective of the computation is to investigate the fluid dynamics of force production associated with the undulatory mechanical fin. An unstructured, grid-based, unsteady Navier-Stokes solver with automatic adaptive remeshing is used to compute the unsteady flow around the fin through five complete cycles. The pressure distribution on fin surface is computed and integrated to provide fin forces which are decomposed into lift and thrust. The velocity field is also computed throughout the swimming cycle. Finally, a comparison is conducted to reveal the dynamics of force generation according to the kinematic parameters of the undulatory fin (amplitude, frequency and wavelength).
基金Project(51405389)supported by the National Natural Science Foundation of ChinaProject(2014003)supported by the Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,China+1 种基金Project(3102015ZY024)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(108-QP-2014)supported by the Research Fund of the State Key Laboratory of Solidification Processing,Northwestern Polytechnical University,China
文摘The flow distribution in quench tank for heat treatment of A357 alloy large complicated components was simulated using FLUENT computational fluid dynamics(CFD) software.The flow velocity and the uniformity of flow field in two types of quench tanks(with or without agitation system) were calculated.The results show that the flow field in the quench tank without agitation system has not evident regularity.While as for the quench tank with agitation system,the flow fields in different parameters have certain regularity.The agitation tanks have a distinct advantage over the system without agitation.Proper process parameters were also obtained.Finally,the tank model established in this work was testified by an example from publication.This model with high accuracy is able to optimize the tank structures and can be helpful for industrial production and theoretical investigation in the fields of heat treatment of large complicated components.
文摘In hot and arid regions like the Saharan area,effective methods for cooling and humidifying intake air are essential.This study explores the utilization of a water trickle cooler as a promising solution to meet this objective.In particular,the HASSI MESSAOUD area is considered as a testbed.The water trickle cooler is chosen for its adaptability to arid conditions.Modeling results demonstrate its effectiveness in conditioning air before it enters the compressor.The cooling system achieves a significant temperature reduction of 6 to 8 degrees Celsius,enhancing mass flow rate dynamics by 3 percent compared to standard cases without cooling.Moreover,the cooling system contributes to a remarkable 10 percent reduction in power consumption of gas turbines and a notable 10 percent increase in turbine efficiency.These findings highlight the potential of water trickle coolers in improving the performance and efficiency of gas turbine systems in hot and dry climates.
文摘Aiming to mitigate the aerodynamic lift force imbalance between pantograph strips,which exacerbates wear and affects the current collection performance of the pantograph-catenary system,a study has been conducted to support the beam deflector optimization using a combination of experimental measurements and computational fluid dynamics(CFD)simulations.The results demonstrate that the size,position,and installation orientation of the wind deflectors significantly influence the amount of force compensation.They also indicate that the front strip deflectors should be installed downwards and the rear strip deflectors upwards,thereby forming a“π”shape.Moreover,the lift force compensation provided by the wind deflectors increases with the size of the deflector.Alternative wind compensation strategies,such as control circuits,are also discussed,putting emphasis on the pros and cons of various pantograph types and wind compensation approaches.
文摘The paper presents the analysis of a human evacuation from a higher education building located in Iassy,Romania,by means of engineering techniques to approach fire safety.Because in Romania(as in other European countries)fire safety design of buildings is prescriptive and not performance-based,a fire safety engineering approach arouse great interest in many countries such as the U.S.A.,Australia,New Zealand,England,Sweden,Finland,etc.This paper is based on the assumption of starting a fire in the space of a hall for festivities,located on the ground floor of the building,near two human evacuation routes;We consider two building evacuation scenarios:two exits and,respectively,just one exit(assuming that the second would be accidentally blocked).
基金supported by the National Natural Science Foundation of China(Grant No.52078010)Beijing Natural Science Foundation(Grant No.JQ19029).
文摘A 5-MW wind turbine has been modeled and analyzed for fluid-structure interaction and aerodynamic performance.In this study, a full-scale model of a 5-MW wind turbine is first developed based on a computational fluid dynamics(CFD) approach, in which the unsteady, noncompressible Reynolds Averaged Navier-Stokes(RANS) method is used. The main focus of the study is to analyze the tower shadow effect on the aerodynamic performance of the wind turbine under different inlet flow conditions. Subsequently, the finite element model is established by considering fluid/structure interactions to study the structural stress, displacement, strain distributions and flow field information of the structure under the uniform wind speed. Finally, the fluid-structure interaction model is established by considering turbulent wind and the tower shadow effect. The variation rules of the dynamic response of the one-way and two-way fluid-structure interaction(FSI) models under different wind speeds are analyzed, and the numerical calculation results are compared with those of the centralized mass model. The results show that the tower shadow effect and structural deformation are the main factors affecting the aerodynamic load fluctuation of the wind turbine, which in turn affects the aerodynamic performance and structural stability of the blades. The structural dynamic response of the coupled model shows significant similarity, while the structural displacement response of the former exhibits less fluctuation compared with the conventional centralized mass model. The one-way fluid-structure interaction(FSI)model shows a higher frequency of stress-strain and displacement oscillations on the blade compared with the two-way FSI model.
文摘This work focuses on the development and implementation of a simulation-based approach for the detection of partial and extended blockages within an edible oil pipeline system. Blockages, whether partial or extended, pose a significant operational and safety risks. This study employs computational fluid dynamics (CFD) simulations to model the flow behaviour of edible oil through pipeline under varying conditions. It leverages advanced computational fluid dynamics (CFD) simulations to analyze pressure, velocity, and temperature variations along the pipeline. By simulating scenarios with different blockage characteristics, there is establishment of distinctive patterns indicative of partial and extended obstructions. Through extensive analysis of simulation data, sensing element, and monitoring system, processing signal input and response output, the system can accurately pinpoint the location and severity of blockages, providing crucial insights for timely intervention. The detection system represents a significant advancement in pipeline monitoring technology, offering a proactive and accurate approach to identify blockages and mitigate potential risks and ensure the uninterrupted flow of edible oil, thereby enabling timely intervention and maintenance.
文摘At T-junctions, where hot and cold streams flowing in pipes join and mix, significant temperature fluctuations can be created in very close neighborhood of the pipe walls. The wall temperature fluctuations cause cyclical thermal stresses which may induce fatigue cracking. Temperature fluctuation is of crucial importance in many engineering applications and especially in nuclear power plants. This is because the phenomenon leads to thermal fatigue and might subsequently result in failure of structural material. Therefore, the effects of temperature fluctuation in piping structure at mixing junctions in nuclear power systems cannot be neglected. In nuclear power plant, piping structure is exposed to unavoidable temperature differences in a bid to maintain plant operational capacity. Tightly coupled to temperature fluctuation is flow turbulence, which has attracted extensive attention and has been investigated worldwide since several decades. The focus of this study is to investigate the effects of injection pipe orientation on flow mixing and temperature fluctuation for fluid flow downstream a T-junction. Computational fluid dynamics (CFD) approach was applied using STAR CCM+ code. Four inclination angles including 0 (90), 15, 30 and 45 degrees were studied and the mixing intensity and effective mixing zone were investigated. K-omega SST turbulence model was adopted for the simulations. Results of the analysis suggest that, effective mixing of cold and hot fluid which leads to reduced and uniform temperature field at the pipe wall boundary, is achieved at 0 (90) degree inclination of the branch pipe and hence may lower thermal stress levels in the structural material of the pipe. Turbulence mixing, pressure drop and velocity distribution were also found to be more appreciable at 0 (90) degree inclination angle of the branch pipe relative to the other orientations studied.
文摘In the 21st century, the deployment of ground-based Solar Photovoltaic (PV) Modules has seen exponential growth, driven by increasing demands for green, clean, and renewable energy sources. However, their usage is constrained by certain limitations. Notably, the efficiency of solar PV modules on the ground peaks at a maximum of 25%, and there are concerns regarding their long-term reliability, with an expected lifespan of approximately 25 years without failures. This study focuses on analyzing the thermal efficiency of PV Modules. We have investigated the temperature profile of PV Modules under varying environmental conditions, such as air velocity and ambient temperature, utilizing Computational Fluid Dynamics (CFD). This analysis is crucial as the efficiency of PV Modules is significantly impacted by changes in the temperature differential relative to the environment. Furthermore, the study highlights the effect of airflow over solar panels on their temperature. It is found that a decrease in the temperature of the PV Module increases Open Circuit Voltage, underlining the importance of thermal management in optimizing solar panel performance.
基金The National Natural Science Foundation of China(No.51276038)
文摘A comprehensive computational fluid dynamics(CFD) model is developed based on the gas-liquid two-phase hydrodynamics,gas-liquid mass-transfer theory and chemical reaction kinetics,and the ammonia-based CO2 absorption in a spray column is numerically studied.The Euler-Lagrange model is applied to describe the behavior of gas-liquid twophase flowand heat transfer.The dual-film theory and related correlations are adopted to model the gas-liquid mass transfer and chemical absorption process.The volatilization model of multi-component droplet is utilized to account for ammonia slippage.The effect of operation parameters on CO2 removal efficiency is numerically studied.The results showa good agreement with the previous experimental data,proving the validity of the proposed model.The profile studies of gasphase velocity and CO2 concentration suggest that the flowfield has a significant impact on the CO2 concentration field.Also,the local CO2 absorption rate is influenced by both local turbulence and the local liquid-gas ratio.Furthermore,the velocity field of gas phase is optimized by the method of adjusting the orifice plate,and the results showthat the CO2 removal efficiency is improved by approximately 4%.
文摘Improving vehicle fuel consumption,performance and aerodynamic efficiency by drag reduction especially in heavy vehicles is one of the indispensable issues of automotive industry.In this work,the effects of adding append devices like deflector and cab vane corner on heavy commercial vehicle drag reduction were investigated.For this purpose,the vehicle body structure was modeled with various supplementary parts at the first stage.Then,computational fluid dynamic(CFD) analysis was utilized for each case to enhance the optimal aerodynamic structure at different longitudinal speeds for heavy commercial vehicles.The results show that the most effective supplementary part is deflector,and by adding this part,the drag coefficient is decreased considerably at an optimum angle.By adding two cab vane corners at both frontal edges of cab,a significant drag reduction is noticed.Back vanes and base flaps are simple plates which can be added at the top and side end of container and at the bottom with specific angle respectively to direct the flow and prevent the turbulence.Through the analysis of airflow and pressure distribution,the results reveal that the cab vane reduces fuel consumption and drag coefficient by up to 20 % receptively using proper deflector angle.Finally,by adding all supplementary parts at their optimized positions,41% drag reduction is obtained compared to the simple model.