Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly cons...Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly considers the impact resistance of the material,and lacks the high-velocity impact damage monitoring research of CFRP.To solve this problem,a real high-velocity impact damage experiment and structural health monitoring(SHM)method of CFRP plate based on piezoelectric guided wave is proposed.The results show that CFRP has obvious perforation damage and fiber breakage when high-velocity impact occurs.It is also proved that guided wave SHM technology can be effectively used in the monitoring of such damage,and the damage can be reflected by quantifying the signal changes and damage index(DI).It provides a reference for further research on guided wave structure monitoring of high/hyper-velocity impact damage of CFRP.展开更多
In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual s...In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual size of an ancient building, a wooden frame model with a scale of 1 : 8 of the prototype structure is built considering the swallow-tail type of tenon-mortise connections. Low cyclic reversed loading tests are carried out including three groups of unstrengthened structures and two groups of structures strengthened with CFRP. Based on experimental data, moment-rotation angle hysteretic curves and skeleton curves for each joint are obtained. The energy dissipation capability, stiffness degradation and deformation performance of the joints before and after being strengthened are also analyzed. Results show that after being strengthened with CFRP, the tenon value pulled out of the mortise is reduced; the bending strength and the energy dissipation capabilities of the joint are enhanced; stiffness degradation of the joint is not obvious; and the deformation performance of the joint remains good. Thus, the CFRP has good effects on strengthening the tenon-mortise joints of Chinese ancient buildings.展开更多
In order to study the fatigue behavior of the damaged reinforced concrete (RC) beams strengthened by carbon fiber reinforced polymer (CFRP) laminate, three T-shaped beams strengthened by CFRP and one contrasting b...In order to study the fatigue behavior of the damaged reinforced concrete (RC) beams strengthened by carbon fiber reinforced polymer (CFRP) laminate, three T-shaped beams strengthened by CFRP and one contrasting beam are tested under fatigue loading, with the parameters of different modes of strengthening and different fatigue load levels considered. The main results obtained from the tests are: the width of the crack decreases 50. 2% to 66%, and the development of the crack is limited; the stress of steel decreases 24. 1% to 28. 2%, and the stiffness increases 14.9% to 16. 1% after being strengthened. Based on the technical specification for strengthening concrete structures with CFRP and the conclusions from the tests, a calculating scheme of the flexure stiffness is given, which can be used for reference in engineering design. Finally, some suggestions are given for design in fatigue strengthening.展开更多
Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the ...Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.展开更多
The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP gri...The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP grid and the concrete under different types of adhesive and surface treatment were tested. The most efficient anchoring system was adopted for the subsequent scaled tunnel strengthening. Test results show that when the epoxy structural adhesive was used as the bonding material, the failure mode was CFRP grids rupturing,and the anchorage performance was optimal. When the polymer mortar was used as the adhesive, the surface treatments with anchored bolts and grooves can improve the bond performance, and the failure mode was sliding failure with the polymer mortar peeled off. After strengthening with CFRP grids, both the stiffness and the load capacity of the pre-damaged scaled tunnel model were improved. Additionally,the results obtained by fiber bragg grating(FBG) sensors indicate that the strains across tunnel segments were reduced,and the overall performance of the tunnel was improved.展开更多
To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-s...To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable’s cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge, its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable’s cross-sectional area should be deter-mined by the principle of equivalent axial stiffness.展开更多
This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model w...This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam.展开更多
CFRP (carbon fiber reinforced plastics) composite materials have wide applicability because of their inherent design flexibility and improved material properties. However, impacted composite structures have 50%-75% ...CFRP (carbon fiber reinforced plastics) composite materials have wide applicability because of their inherent design flexibility and improved material properties. However, impacted composite structures have 50%-75% less strength than undamaged structures. In this work, a CFRP composite material was nondestructively characterized in order to ensure product quality and structural integrity of CFRP and one-sided pitch-catch technique was developed to measure impacted-damaged area by using an automated-data acquisition system in an immersion tank. A pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave under defect conditions in the composite.展开更多
The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the comp...The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the composite specimens were investigated in detail. The influence of different ratio of CFRP on bearing capacity, loading-strain curves, compound modulus, rigidity and ductility of the composite specimens was analyzed. The experimental results indicate that the composite specimen can work harmonically and the steel plate does not break in tension. Comparing with steel plate, the bearing capacity and the rigidity of the composite specimens increase and ductility decreases. The bearing capacity increases sharply with the increase in the number of layers of CFRP. With the increase in CFRP, the yield strength increases slightly and ductility decreases. The experimental researches can provide a theoretical basis for engineering application of combination strengthening.展开更多
The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dea...The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.展开更多
In order to overcome the shortcoming of space-borne rigid antenna reflector made of carbon fiber reinforced plastic(CFRP)skins with aluminum honeycomb sandwich(SAHS)structure,a new type of full CFRP skin plus rib(SPR)...In order to overcome the shortcoming of space-borne rigid antenna reflector made of carbon fiber reinforced plastic(CFRP)skins with aluminum honeycomb sandwich(SAHS)structure,a new type of full CFRP skin plus rib(SPR)structure ring-focused parabolic surface antenna reflector with the size of 2.5 m×1.9 m is designed.Under the condition that the original caliber,surface type,and interface remain unchanged,the main influence factors are designed and controlled.First,from the perspective of high stiffness,lightweight,and easy to form,a finite element simulation software is used to analyze and optimize the layout of the rib,the cross-sectional shape of the rib,the size of the rib,and the matching of the size and the coefficients of thermal expansion(CTEs)of the rib and the skin.Second,two structures are prepared by the autoclave molding process.Third,the weight and the surface precision root mean square(RMS)value are measured.The results show that the fundamental frequency of the SPR structure is 142.2 Hz,which is 3.5 Hz higher;the number of the new structural parts is reduced by 40%,and the forming process is greatly simplified.The total weight of the new structure is 11.9 kg,lighter 42.5%,indicating that the weight loss is obvious.The RMS value is 0.15 mm,which is slightly lower 0.01 mm but satisfies the accuracy requirement not greater than 0.3 mm.It is proved that the SPR structure reflector is a superior structure of the lightweight spaceborne antenna reflector.展开更多
Due to the widespread use of carbon fiber reinforced polymer/plastic(CFRP),the nondestructive structural health monitoring for CFRP is playing an increasingly essential role.As a nonrad iative,noninvasive and nondestr...Due to the widespread use of carbon fiber reinforced polymer/plastic(CFRP),the nondestructive structural health monitoring for CFRP is playing an increasingly essential role.As a nonrad iative,noninvasive and nondestructive detection technique,planar electrical capacitance tomography(PECT)electrodes array is employed in this paper to reconstruct the damage image according to the calculated dielectric constant changes.The shape and duty ratio of PECT electro-des are optimized according to the relations between sensitivity distribution and the dielectric constant of different anisotropic degrees.The sensitivity matrix of optimized PECT sensor is more uniform as the result shows,because the sensitiv-ity of insensitivity area can be increased by adding rotation of optimized electro-des.The reconstructed image qualities due to different PECT arrays and different damage locations are investigated at last.The simulation results indicate that:PECT can be used to detect the surface damage of CFRP;the sensitivity matrix of PECT for CFRP is highly relevant with the degree of anisotropic dielectric con-stant;the rotatable PECT sensor with rotation has better performance in unifor-mity of sensitivity;for different damage locations,the rotatable sensor with rotation has better image quality in most cases.展开更多
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w...This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.展开更多
A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-p...A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-plane and out-of-plane dynamics of the inclined CFRP cable are obtained by Hamilton's principle. The linear eigenvalues are explored theoretically. Then, the ordinary differential equations for analyzing the dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.The steady-state solutions of the nonlinear equations are obtained by the multiple scale method(MSM) and the Newton-Raphson method. The frequency-and force-response curves are used to investigate the dynamic behaviors of the inclined CFRP cable under simultaneous internal(between the lowest in-plane and out-of-plane modes) and external resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respectively. The effects of the key parameters, e.g., Young's modulus, the excitation amplitude,and the frequency on the dynamic behaviors, are discussed in detail. Some interesting phenomena and results are observed and concluded.展开更多
The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the co...The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.展开更多
Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relat...Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.展开更多
Many beam structures suffer from gradual performance degradation with the increase of service life.To recover the bearing capacity of these beams,carbon fiber reinforced polymer(CFRP)plates are developed to attached o...Many beam structures suffer from gradual performance degradation with the increase of service life.To recover the bearing capacity of these beams,carbon fiber reinforced polymer(CFRP)plates are developed to attached on the beam bottom.To check the structural performance of the CFRP reinforced beams,smart CFRP plate with FBGs in series is designed and LVDTs are adopted to measure the deformations.The deflection of the reinforced beam is given based on the elastic conversion cross-section method.The experimental results validate the effectiveness of the proposed algorithm.The study shows that the CFRP reinforced zone has a larger flexural rigidity than the pure steel beam zone.The general distribution of the deflection along the span of the CFRP reinforced beam can be described by the proposed formula.It provides a scientific design guidance for the deflection control of CFRP reinforced structures.展开更多
Due to the increase of service life,the phenomenon of performance degradation of bridge structures becomes more and more common.It is important to strengthen the bridge structures so as to restore the resistance level...Due to the increase of service life,the phenomenon of performance degradation of bridge structures becomes more and more common.It is important to strengthen the bridge structures so as to restore the resistance level and extend the normal service life.Carbon fiber reinforced polymer(CFRP)materials are thus used for the assembly reinforcement of bridges for the advantages of high strength,light weight,corrosion resistance and long-term stability of physical and chemical properties,etc.In view of this,based on the previous theoretical study and the established formula of the interfacial shear stress of CFRP reinforced steel beam and the normal stress of CFRP plate,this paper discusses the sensitive parameters that affect the interfacial interaction of CFRP strengthened beam structures.Through the analysis,the priority design indicators and suggestions are accordingly given for the design of reinforced beam structures.Young’s modulus of CFRP composite and shear modulus of the adhesive have the greatest influence on the interfacial interaction,which should be carefully considered.It is suggested that CFRP material with Ec close to 300 GPa and thickness no less than 3 mm,and adhesive material with Ga less than 5 GPa and 3-mm thickness can be adopted in CFRP reinforced steel beam.The conclusions of this paper can provide guidance for the interfacial damage control of CFRP reinforced steel beam structures.展开更多
In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,2...In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,20,or 40 mm rounded corner radii at vertical edges. A 100 mm overlap in the direction of fibers was provided to ensure a proper bond. Uniaxial compression tests were conducted to investigate the compressive behaviors including the axial strength,stress-strain response,and ductility. It is evident that the CFRP tube confinement can improve the compressive behavior of concrete core,in terms of axial compressive strength or axial deformability. Based on the experimental results and some existing test database attained by other researchers,a design-oriented model is developed. The predictions of the model for CFRP/ECCs show good agreement with test results.展开更多
Adhesively Bonded Carbon Fibre Reinforced Plastic(CFRP)and titanium alloy have been extensively used as a hybrid structure in modern aircrafts due to their excellent combination of mechanical properties and chemical s...Adhesively Bonded Carbon Fibre Reinforced Plastic(CFRP)and titanium alloy have been extensively used as a hybrid structure in modern aircrafts due to their excellent combination of mechanical properties and chemical stabilities.This study utilised NaOH anodising method to create micro-rough titanium surfaces for enhancing adhesive bonding between titanium alloy and CFRP laminates.A special and simple technique named Resin Pre-Coating(RPC)was also employed to improve the surface wetting of anodised titanium and grinded CFRP substrates.The influences of anodising temperature and duration on the surface morphology,wettability and adhesive bond strength were investigated.The single lap shear test results showed that the bond strength of specimens anodised at 20℃for 15 min improved by 135.9%and 95.4%,respectively,in comparison with that of acid pickled and grinded specimens(without RPC treatment).Although increasing the anodising temperature and duration produced rougher titanium surfaces,the adhesively bonded joints were not strong enough due to relatively friable titanium oxide layers.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51921003,52275153)the Fundamental Research Funds for the Central Universities(No.NI2023001)+2 种基金the Research Fund of State Key Laboratory of Mechanics and Control for Aero-space Structures(No.MCAS-I-0423G01)the Fund of Pro-spective Layout of Scientific Research for Nanjing University of Aeronautics and Astronauticsthe Priority Academic Program Development of Jiangsu Higher Education Institu-tions of China.
文摘Carbon fiber-reinforced polymer(CFRP)is widely used in aerospace applications.This kind of material may face the threat of high-velocity impact in the process of dedicated service,and the relevant research mainly considers the impact resistance of the material,and lacks the high-velocity impact damage monitoring research of CFRP.To solve this problem,a real high-velocity impact damage experiment and structural health monitoring(SHM)method of CFRP plate based on piezoelectric guided wave is proposed.The results show that CFRP has obvious perforation damage and fiber breakage when high-velocity impact occurs.It is also proved that guided wave SHM technology can be effectively used in the monitoring of such damage,and the damage can be reflected by quantifying the signal changes and damage index(DI).It provides a reference for further research on guided wave structure monitoring of high/hyper-velocity impact damage of CFRP.
基金The Cultural Ministry Foundation of China(No.17-2009)the Research Foundation of Palace Museum(No.2007-4)
文摘In order to well protect Chinese ancient buildings, aseismic behaviors of Chinese ancient tenon-mortise joints strengthened by carbon fibre reinforced plastic (CFRP) are studied by experiments. Based on the actual size of an ancient building, a wooden frame model with a scale of 1 : 8 of the prototype structure is built considering the swallow-tail type of tenon-mortise connections. Low cyclic reversed loading tests are carried out including three groups of unstrengthened structures and two groups of structures strengthened with CFRP. Based on experimental data, moment-rotation angle hysteretic curves and skeleton curves for each joint are obtained. The energy dissipation capability, stiffness degradation and deformation performance of the joints before and after being strengthened are also analyzed. Results show that after being strengthened with CFRP, the tenon value pulled out of the mortise is reduced; the bending strength and the energy dissipation capabilities of the joint are enhanced; stiffness degradation of the joint is not obvious; and the deformation performance of the joint remains good. Thus, the CFRP has good effects on strengthening the tenon-mortise joints of Chinese ancient buildings.
基金The Natural Science Foundation of Jiangsu Province(NoBK2004064)the Postdoctoral Foundation of Jiangsu Province(No0701008B)
文摘In order to study the fatigue behavior of the damaged reinforced concrete (RC) beams strengthened by carbon fiber reinforced polymer (CFRP) laminate, three T-shaped beams strengthened by CFRP and one contrasting beam are tested under fatigue loading, with the parameters of different modes of strengthening and different fatigue load levels considered. The main results obtained from the tests are: the width of the crack decreases 50. 2% to 66%, and the development of the crack is limited; the stress of steel decreases 24. 1% to 28. 2%, and the stiffness increases 14.9% to 16. 1% after being strengthened. Based on the technical specification for strengthening concrete structures with CFRP and the conclusions from the tests, a calculating scheme of the flexure stiffness is given, which can be used for reference in engineering design. Finally, some suggestions are given for design in fatigue strengthening.
基金the financial support by the Council of Scientific&Industrial Research(CSIR)-Research Scheme,India(22/0809/2019-EMR-II)。
文摘Damage caused due to low-velocity impacts in composites leads to substantial deterioration in their residual strength and eventually provokes structural failure.This work presents an experimental investigation on the effects of different patch and parent laminate stacking sequences on the enhancement of impact strength of Carbon Fiber Reinforced Polymers(CFRP)composites by utilising the adhesively bonded external patch repair technique.Damage evolution study is also performed with the aid of Acoustic Emission(AE).Two different quasi-isotropic configurations were selected for the parent laminate,viz.,[45°/45°/0°/0°]s and[45°/0°/45°/0°]s.Quasi Static Indentation(QSI)test was performed on both the pristine laminates,and damage areas were detected by using the C-scan inspection technique.Damaged laminates were repaired by using a single-sided patch of two different configurations,viz.,[45°/45°/45°/45°]and[45°/0°/0°/45°],and employing a circular plug to fill the damaged hole.Four different combinations of repaired laminates with two configurations of each parent and patch laminate were produced,which were further subjected to the QSI test.The results reveal the effectiveness of the repair method,as all the repaired laminates show higher impact resistance compared to the respective pristine laminates.Patches of[45°/0°/0°/45°]configuration when repaired by taking[45°/45°/0°/0°]s and[45°/0°/45°/0°]s as parents exhibited 68%and 73%higher peak loads,respectively,than the respective pristine laminates.Furthermore,parent and patch of configuration[45°/0°/45°/0°]s and[45°/0°/0°/45°],respectively,attain the highest peak load,whereas[45°/45°/0°/0°]s and[45°/45°/45°/45°]combinations possess the most gradual decrease in the load.
基金The Science and Technology Project of China Southern Pow er Grid Co.,Ltd.(No.GDKJ00000030)the National Key Technology R&D Program of China(No.2016YFC0701400)the National Natural Science Foundation of China(No.51525801)
文摘The effectiveness of carbon fiber reinforced polymer(CFRP) grids as the strengthening materials for a pre-damaged scaled tunnel model is experimentally investigated. First, the bond performances between the CFRP grid and the concrete under different types of adhesive and surface treatment were tested. The most efficient anchoring system was adopted for the subsequent scaled tunnel strengthening. Test results show that when the epoxy structural adhesive was used as the bonding material, the failure mode was CFRP grids rupturing,and the anchorage performance was optimal. When the polymer mortar was used as the adhesive, the surface treatments with anchored bolts and grooves can improve the bond performance, and the failure mode was sliding failure with the polymer mortar peeled off. After strengthening with CFRP grids, both the stiffness and the load capacity of the pre-damaged scaled tunnel model were improved. Additionally,the results obtained by fiber bragg grating(FBG) sensors indicate that the strains across tunnel segments were reduced,and the overall performance of the tunnel was improved.
基金Project (No. 502118) supported by the Natural Science Foundation of Zhejiang Province, China
文摘To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable’s cross-sectional area is determined by the principle of equivalent axial stiffness. Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge, its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable’s cross-sectional area should be deter-mined by the principle of equivalent axial stiffness.
基金by the Natural Science Foundation of China(Grant No U1737112)Chinese Postdoctoral Station of Yihua Life Science and Technology Co.,Ltd.(No.201141).
文摘This study presents a new structure made up of bamboo scrimber and carbon fiber reinforced polymer(CFRP)to address the low stiffness and strength of bamboo scrimbers.Three-point bending test and finite element model were conducted to study the failure mode,strain-displacement relationship,load-displacement relationship and relationships between strain distribution,contact pressure and deflection,and adhesive debonding.The results indicated that the flexural modulus and static flexural strength of the composite beams were effectively increased thanks to the CFRP sheets.The flexural modulus of the composite specimens were 2.33-2.94 times that of bamboo scrimber beams,and the flexural strength were 1.49-1.58 times that of bamboo scrimber beams.Adhesive debonding had a great influence on the strain distribution and deflection of the composite specimens.It was an important factor for the failure of the CFRP-bamboo scrimber composite specimens.According to the finite element simulation,the strain distribution,contact pressure and deflection also greatly changed with the adhesive debonding.After complete peeling,the deflection of the specimen was 3.09 times that of the unpeeled because it was no longer an integral beam.
文摘CFRP (carbon fiber reinforced plastics) composite materials have wide applicability because of their inherent design flexibility and improved material properties. However, impacted composite structures have 50%-75% less strength than undamaged structures. In this work, a CFRP composite material was nondestructively characterized in order to ensure product quality and structural integrity of CFRP and one-sided pitch-catch technique was developed to measure impacted-damaged area by using an automated-data acquisition system in an immersion tank. A pitch-catch signal was found to be more sensitive than normal incidence backwall echo of longitudinal wave under defect conditions in the composite.
基金Hubei Provincial Important Science and Technology De-velopment Planning Sponsor Projects (No. 20001P2104)The Project of National Natural Science Foundation of China ( No. 50678136)
文摘The tensile properties of five groups of composite specimens, which consist of steel plate bonded by CFRP,were experimentally researched. The failure types, performing characteristics and failure mechanism of the composite specimens were investigated in detail. The influence of different ratio of CFRP on bearing capacity, loading-strain curves, compound modulus, rigidity and ductility of the composite specimens was analyzed. The experimental results indicate that the composite specimen can work harmonically and the steel plate does not break in tension. Comparing with steel plate, the bearing capacity and the rigidity of the composite specimens increase and ductility decreases. The bearing capacity increases sharply with the increase in the number of layers of CFRP. With the increase in CFRP, the yield strength increases slightly and ductility decreases. The experimental researches can provide a theoretical basis for engineering application of combination strengthening.
文摘The earthquake resistant property of reinforced concrete members depends on the interaction between reinforcing bars and surrounding concrete through bond to a large degree. In this paper a general system aimed at dealing with the failure analysis of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheets including bond slip of the anchored reinforcing bars at the foot of the columns is presented. It is based on the yield design theory with a mixed modeling of the structure, according to which the concrete material is treated as a classical two dimensional continuum, whereas the longitudinal reinforcing bars are regarded as one dimensional rods including bond slip at the foot of the columns. In shear reinforced zones both the shear CFRP sheets and transverse reinforcing bars are incorporated in the analysis through a homogenization procedure and they are only in tension. The approach is then implemented numerically by means of the finite element formulation. The numerical procedure produces accurate estimates for the loading carrying capacity of the shear members taken as an illustrative application by correlation with the experimental results, so the proposed approach is valid.
文摘In order to overcome the shortcoming of space-borne rigid antenna reflector made of carbon fiber reinforced plastic(CFRP)skins with aluminum honeycomb sandwich(SAHS)structure,a new type of full CFRP skin plus rib(SPR)structure ring-focused parabolic surface antenna reflector with the size of 2.5 m×1.9 m is designed.Under the condition that the original caliber,surface type,and interface remain unchanged,the main influence factors are designed and controlled.First,from the perspective of high stiffness,lightweight,and easy to form,a finite element simulation software is used to analyze and optimize the layout of the rib,the cross-sectional shape of the rib,the size of the rib,and the matching of the size and the coefficients of thermal expansion(CTEs)of the rib and the skin.Second,two structures are prepared by the autoclave molding process.Third,the weight and the surface precision root mean square(RMS)value are measured.The results show that the fundamental frequency of the SPR structure is 142.2 Hz,which is 3.5 Hz higher;the number of the new structural parts is reduced by 40%,and the forming process is greatly simplified.The total weight of the new structure is 11.9 kg,lighter 42.5%,indicating that the weight loss is obvious.The RMS value is 0.15 mm,which is slightly lower 0.01 mm but satisfies the accuracy requirement not greater than 0.3 mm.It is proved that the SPR structure reflector is a superior structure of the lightweight spaceborne antenna reflector.
基金This work is supported by the National Natural Science Foundation of China(Grant No.61871379).
文摘Due to the widespread use of carbon fiber reinforced polymer/plastic(CFRP),the nondestructive structural health monitoring for CFRP is playing an increasingly essential role.As a nonrad iative,noninvasive and nondestructive detection technique,planar electrical capacitance tomography(PECT)electrodes array is employed in this paper to reconstruct the damage image according to the calculated dielectric constant changes.The shape and duty ratio of PECT electro-des are optimized according to the relations between sensitivity distribution and the dielectric constant of different anisotropic degrees.The sensitivity matrix of optimized PECT sensor is more uniform as the result shows,because the sensitiv-ity of insensitivity area can be increased by adding rotation of optimized electro-des.The reconstructed image qualities due to different PECT arrays and different damage locations are investigated at last.The simulation results indicate that:PECT can be used to detect the surface damage of CFRP;the sensitivity matrix of PECT for CFRP is highly relevant with the degree of anisotropic dielectric con-stant;the rotatable PECT sensor with rotation has better performance in unifor-mity of sensitivity;for different damage locations,the rotatable sensor with rotation has better image quality in most cases.
文摘This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet.
基金Project supported by the National Natural Science Foundation of China(Nos.11572117 and 11502076)
文摘A dynamic model for an inclined carbon ?ber reinforced polymer(CFRP)cable is established, and the linear and nonlinear dynamic behaviors are investigated in detail. The partial differential equations for both the in-plane and out-of-plane dynamics of the inclined CFRP cable are obtained by Hamilton's principle. The linear eigenvalues are explored theoretically. Then, the ordinary differential equations for analyzing the dynamic behaviors are obtained by the Galerkin integral and dimensionless treatments.The steady-state solutions of the nonlinear equations are obtained by the multiple scale method(MSM) and the Newton-Raphson method. The frequency-and force-response curves are used to investigate the dynamic behaviors of the inclined CFRP cable under simultaneous internal(between the lowest in-plane and out-of-plane modes) and external resonances, i.e., the primary resonances induced by the excitations of the in-plane mode,the out-of-plane mode, and both the in-plane mode and the out-of-plane mode, respectively. The effects of the key parameters, e.g., Young's modulus, the excitation amplitude,and the frequency on the dynamic behaviors, are discussed in detail. Some interesting phenomena and results are observed and concluded.
基金Project(2010-K2-8)supported by Science and Technology Program of the Ministry of Housing and Urban Rural Development,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The feasibility of longer spans relies on the successful implementation of new high-strength light weight materials such as carbon fiber reinforced polymer(CFRP). First, a dimensionless equilibrium equation and the corresponding compatibility equation are established to develop the cable force equation and cable displacement governing equation for suspension cables, respectively. Subsequently, the inextensible cable case is introduced. The formula of the Irvine parameter is considered and its physical interpretation as well as its relationship with the chord gravity stiffness is presented. The influences on the increment of cable force and displacement by λ2 and load ratio p′ are analyzed, respectively. Based on these assumptions and the analytical formulations, a 2000 m span suspension cable is utilized as an example to verify the proposed formulation and the responses of the relative increment of cable force and cable displacement under symmetrical and asymmetrical loads are studied and presented. In each case, the deflections resulting from elastic elongation or solely due to geometrical displacement are analyzed for the lower elastic modulus CFRP. Finally, in comparison with steel cables, the influences on the cable force equation and the governing displacement equation by span and rise span ratio are analyzed. Moreover, the influences on the static performance of suspension bridge by span and sag ratios are also analyzed. The substantive characteristics of the static performance of super span CFRP suspension bridges are clarified and the superiority and the characteristics of CFRP cable structure are demonstrated analytically.
基金supported by the research fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics)(No. MCMS-I-0518K01&MCMSI-0519G02)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)the Natural Science Funding (No. 51875277)
文摘Due to the electrical anisotropy of carbon fiber reinforced polymer(CFRP),this paper presents a method to inverse the anisotropic conductivity of unidirectional CFRP laminate using eddy current testing(ECT). The relationship between the conductivity and probe signal of ECT is studied by means of numerical simulation. Finally,the accuracy of inversion result is improved by optimizing the initial conductivity by use of experimental data.
基金The work described in this paper was supported by the National Natural Science Foundation of China(Grant No.51908263)Double First-Class(First-Class University&First-Class Disciplines)Funds of Lanzhou University(Grant No.561119201)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2020-56)Key Laboratory of Structures Dynamic Behavior and Control(Ministry of Education)in Harbin Institute of Technology(Grant No.HITCE201901).
文摘Many beam structures suffer from gradual performance degradation with the increase of service life.To recover the bearing capacity of these beams,carbon fiber reinforced polymer(CFRP)plates are developed to attached on the beam bottom.To check the structural performance of the CFRP reinforced beams,smart CFRP plate with FBGs in series is designed and LVDTs are adopted to measure the deformations.The deflection of the reinforced beam is given based on the elastic conversion cross-section method.The experimental results validate the effectiveness of the proposed algorithm.The study shows that the CFRP reinforced zone has a larger flexural rigidity than the pure steel beam zone.The general distribution of the deflection along the span of the CFRP reinforced beam can be described by the proposed formula.It provides a scientific design guidance for the deflection control of CFRP reinforced structures.
基金The work described in this paper was supported by the National Natural Science Foundation of China(Grant No.51908263)Double First-Class(First-Class University&First-Class Disciplines)Funds of Lanzhou University(Grant No.561119201)+1 种基金the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2020-56)Key Laboratory of Structures Dynamic Behavior and Control(Ministry of Education)in Harbin Institute of Technology(Grant No.HITCE201901).
文摘Due to the increase of service life,the phenomenon of performance degradation of bridge structures becomes more and more common.It is important to strengthen the bridge structures so as to restore the resistance level and extend the normal service life.Carbon fiber reinforced polymer(CFRP)materials are thus used for the assembly reinforcement of bridges for the advantages of high strength,light weight,corrosion resistance and long-term stability of physical and chemical properties,etc.In view of this,based on the previous theoretical study and the established formula of the interfacial shear stress of CFRP reinforced steel beam and the normal stress of CFRP plate,this paper discusses the sensitive parameters that affect the interfacial interaction of CFRP strengthened beam structures.Through the analysis,the priority design indicators and suggestions are accordingly given for the design of reinforced beam structures.Young’s modulus of CFRP composite and shear modulus of the adhesive have the greatest influence on the interfacial interaction,which should be carefully considered.It is suggested that CFRP material with Ec close to 300 GPa and thickness no less than 3 mm,and adhesive material with Ga less than 5 GPa and 3-mm thickness can be adopted in CFRP reinforced steel beam.The conclusions of this paper can provide guidance for the interfacial damage control of CFRP reinforced steel beam structures.
文摘In this study,nine square concrete columns,including six CFRP/ECCs and three plain concrete control specimen columns,were prepared. The CFRP tubes with fibers oriented in the hoop direction were manufactured with 10,20,or 40 mm rounded corner radii at vertical edges. A 100 mm overlap in the direction of fibers was provided to ensure a proper bond. Uniaxial compression tests were conducted to investigate the compressive behaviors including the axial strength,stress-strain response,and ductility. It is evident that the CFRP tube confinement can improve the compressive behavior of concrete core,in terms of axial compressive strength or axial deformability. Based on the experimental results and some existing test database attained by other researchers,a design-oriented model is developed. The predictions of the model for CFRP/ECCs show good agreement with test results.
基金supported by the National Natural Science Foundations of China(No.52102115)the Natural Science Foundations of Sichuan Province,China(No.2023NSFSC0961)the Fundamental Research Funds of Jiangsu University of Science and Technology,China(No.1022932318)。
文摘Adhesively Bonded Carbon Fibre Reinforced Plastic(CFRP)and titanium alloy have been extensively used as a hybrid structure in modern aircrafts due to their excellent combination of mechanical properties and chemical stabilities.This study utilised NaOH anodising method to create micro-rough titanium surfaces for enhancing adhesive bonding between titanium alloy and CFRP laminates.A special and simple technique named Resin Pre-Coating(RPC)was also employed to improve the surface wetting of anodised titanium and grinded CFRP substrates.The influences of anodising temperature and duration on the surface morphology,wettability and adhesive bond strength were investigated.The single lap shear test results showed that the bond strength of specimens anodised at 20℃for 15 min improved by 135.9%and 95.4%,respectively,in comparison with that of acid pickled and grinded specimens(without RPC treatment).Although increasing the anodising temperature and duration produced rougher titanium surfaces,the adhesively bonded joints were not strong enough due to relatively friable titanium oxide layers.