Little has been done in measurement and research of the flux of CH4 emission from paddy fields in Changchun area, Jilin Province, China before 1994. So the purpose of the study is to offer available regional data of C...Little has been done in measurement and research of the flux of CH4 emission from paddy fields in Changchun area, Jilin Province, China before 1994. So the purpose of the study is to offer available regional data of CH4 emission flux and to discuss the factors which affect CH4 emission from paddy fields. Experimental paddy fields are chosen using TM pictures respectively in Xinlicheng (43° 49′ N, 125° 20′ E) of the Yitong River’s and in Wanchang (43° 44′ 10″ N, 125° 53′ 11″ E) of the Yinma River’s alluvial plain. The fluxes of CH4 emission from paddy fields are measured by the method of static chamber in Changchun area in 3 consecutive years. The research results show that the peak of CH4 emission from paddy fields occurs during the booting stage. The mean fluxes of CH4 emission are 7.056 mg/(m2· h) and 0.489 mg/(m2· h) in the paddy fields of flood and discontinuous irrigation respectively. The contrastive study holds that climate condition, the way of water management and fertilizer variation have significant influence on fluxes of CH4 emission from paddy fields. The difference of climatic conditions causes the interannual change of the flux of CH4 emission from paddy fields. In general, the flux of CH4 emission from paddy fields of flood irrigation is greater than that from paddy fields of discontinuous irrigation. To change the way of water management perhaps is an available way to reduce CH4 emission flux from paddy fields.展开更多
CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal a...CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal and N-fixing species (Cassia alata) addition, on soil CH4 fluxes in four forest plantations in southern China. Fluxes of CH4 were measured in Eucalyptus urophylla plantation (B1), Acacia crassi-carpa plantation (B2), 10-native-species-mixed plantation (B3), and 30-native-species-mixed plantation (B4) stands using the static chamber method in Southern China. Four forest management treatments, includ-ing (1) understory removal and replacement with C. alata (UR+CA); (2) understory removal only (UR); (3) C. alata addition only (CA); and (4) control without any disturbances (CK), were applied in the four forest plantations. The results showed that plantation types had a significant effect on soil CH4 fluxes. B1 and B2 tended to be CH4 consumers, while B3 and B4 inclined to be CH4 producers. UR decreased CH4 fluxes by providing a more optimal soil temperature and moisture regime for mi-croorganism community and increasing substrate mineralization. How-ever, CA enhanced CH4 fluxes in B1 and B2 for N-fixing function of C. alata while lowered CH4 fluxes in B3 and B4. Soil CH4 flux rate was significantly related to soil temperature and moisture conditions in the top 10-cm soil layer. Furthermore, the quality of substrates, such as Soil Organic Carbon (SOC) and mineral N might also be important driving factors for CH4 fluxes. This study improved our understanding on CH4 fluxes in plantations under different management practices such as UR and CA.展开更多
Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to inv...Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition.展开更多
采用静态暗箱—气相色谱法对太湖地区水稻生态系统甲烷(CH4)排放进行田间原位观测,共设置无氮(NN)、常规(FP)、增产增效(YE)(增产10%~15%,氮肥利用率(NUE)提高20%~30%)、再增产(HY)(增产30%~40%)、再增效(HE)(NUE提高30%~50%)和保...采用静态暗箱—气相色谱法对太湖地区水稻生态系统甲烷(CH4)排放进行田间原位观测,共设置无氮(NN)、常规(FP)、增产增效(YE)(增产10%~15%,氮肥利用率(NUE)提高20%~30%)、再增产(HY)(增产30%~40%)、再增效(HE)(NUE提高30%~50%)和保产增效(IE)(产量不变,NUE提高20%~30%)六种不同的栽培模式。结果表明,稻田CH4排放具有明显的季节变化,在水稻生长期间先升高后降低,从水稻移栽至抽穗期CH4排放通量占全生育期的93%~98%。不同栽培模式间CH4累积排放量差异显著(p<0.05),HY处理高达258.8 kg hm-2,显著高于未施有机肥各处理;单位稻谷产量CH4排放量差异不显著,平均为CO2 0.60 kg kg-1,提高稻谷产量的模式不会显著影响CH4排放;其中YE处理单位稻谷产量CH4排放量最低,为CO2 0.49 kg kg-1,可以同时实现增产、增效和减排,值得推广。展开更多
The Yellow River Delta Wetland is one of the youngest wetlands, and also the most complete, extensive wetlands in China. The wetland in this delta is ecologically important due to their hydrologic attributes and their...The Yellow River Delta Wetland is one of the youngest wetlands, and also the most complete, extensive wetlands in China. The wetland in this delta is ecologically important due to their hydrologic attributes and their roles as ecotones between terrestrial and aquatic ecosystems. In the study, the spatial and temporal variation characteristics of CH4 and CO2 emission flux under five kinds of land use types in the wetland were investigated. The results indicated that the greenhouse gas emission flux, especially the CO2 and CH4, showed distinctly spatial and temporal variation under different land use types in the wetland. In the spring, the emission flux of CO2 was higher than that of CO2 in the autumn, and appeared negative in HW3 and HW4 in the autumn. CH4 emission flux of HW4 and HW5 was negative in the spring and autumn, which indicated that the CH4 emission process was net absorption. Among the five kinds of land use types, the CO2 emission flux of HW4 discharged the largest emission flux reaching 29.3 mg.m-2.h-1, but the CH4 emission flux of HW2 discharged the largest emission flux reaching 0.15 mg.m-2.h-1. From the estuary to the inland, the emission flux of CO2 was decreased at first and then appeared increasing trend, but the emission flux of CH4 was contrary to CO2.展开更多
基金Under the auspices of Jilin Commttee of Science and Technology (grant 963416- 1), and Changchun Jingyuetan Remote Sensing Test
文摘Little has been done in measurement and research of the flux of CH4 emission from paddy fields in Changchun area, Jilin Province, China before 1994. So the purpose of the study is to offer available regional data of CH4 emission flux and to discuss the factors which affect CH4 emission from paddy fields. Experimental paddy fields are chosen using TM pictures respectively in Xinlicheng (43° 49′ N, 125° 20′ E) of the Yitong River’s and in Wanchang (43° 44′ 10″ N, 125° 53′ 11″ E) of the Yinma River’s alluvial plain. The fluxes of CH4 emission from paddy fields are measured by the method of static chamber in Changchun area in 3 consecutive years. The research results show that the peak of CH4 emission from paddy fields occurs during the booting stage. The mean fluxes of CH4 emission are 7.056 mg/(m2· h) and 0.489 mg/(m2· h) in the paddy fields of flood and discontinuous irrigation respectively. The contrastive study holds that climate condition, the way of water management and fertilizer variation have significant influence on fluxes of CH4 emission from paddy fields. The difference of climatic conditions causes the interannual change of the flux of CH4 emission from paddy fields. In general, the flux of CH4 emission from paddy fields of flood irrigation is greater than that from paddy fields of discontinuous irrigation. To change the way of water management perhaps is an available way to reduce CH4 emission flux from paddy fields.
基金This research was supported by the Natural Science Foundation of China (30630015, 30771704)
文摘CH4 is one of the most important greenhouse gases, and mainly comes from soils in forest ecosystems. The objective of this study was to determine the effects of forest management practices such as understory removal and N-fixing species (Cassia alata) addition, on soil CH4 fluxes in four forest plantations in southern China. Fluxes of CH4 were measured in Eucalyptus urophylla plantation (B1), Acacia crassi-carpa plantation (B2), 10-native-species-mixed plantation (B3), and 30-native-species-mixed plantation (B4) stands using the static chamber method in Southern China. Four forest management treatments, includ-ing (1) understory removal and replacement with C. alata (UR+CA); (2) understory removal only (UR); (3) C. alata addition only (CA); and (4) control without any disturbances (CK), were applied in the four forest plantations. The results showed that plantation types had a significant effect on soil CH4 fluxes. B1 and B2 tended to be CH4 consumers, while B3 and B4 inclined to be CH4 producers. UR decreased CH4 fluxes by providing a more optimal soil temperature and moisture regime for mi-croorganism community and increasing substrate mineralization. How-ever, CA enhanced CH4 fluxes in B1 and B2 for N-fixing function of C. alata while lowered CH4 fluxes in B3 and B4. Soil CH4 flux rate was significantly related to soil temperature and moisture conditions in the top 10-cm soil layer. Furthermore, the quality of substrates, such as Soil Organic Carbon (SOC) and mineral N might also be important driving factors for CH4 fluxes. This study improved our understanding on CH4 fluxes in plantations under different management practices such as UR and CA.
文摘Global mean surface air temperature is expected to increase 1.1˚C - 6.4˚C by the end of 21st century which may affect rice productivity and methane emissions in the future climate. This experiment was conducted to investigate the response of rice cultivars to elevated air temperature (+1.5˚C higher than ambient) and soil amendments in regards to rice yield, yield scaled methane emissions and global warming potentials. The experimental findings revealed that replacement of inorganic fertilizers (20% - 40% of recommended NPKS) with Vermicompost, Azolla biofertilizer, enriched sugarcane pressmud, rice husk biochar and silicate fertilization increased rice yield 13.0% - 23.0%, and 11.0% - 19.0% during wet aman and dry boro season, respectively. However, seasonal cumulative CH4 fluxes were decreased by 9.0% - 25.0% and 5.0% - 19.0% during rainfed wet aman and irrigated dry boro rice cultivation, respectively with selected soil amendments. The maximum reduction in seasonal cumulative CH4 flux (19.0% - 25.0%) was recorded with silicate fertilization and azolla biofertilizer amendments (9.0% - 13.0%), whereas maximum grain yield increment 10.0 % - 14.0% was found with Vermicompost and Sugarcane pressmud amendments compared to chemical fertilization (100% NPKS) treated soils at ambient air temperature. However, rice grain yield decreased drastically 43.0% - 50.0% at elevated air temperature (3˚C higher than ambient air temperature), eventhough accelerated the total cumulative CH4 flux as well as GWPs in all treatments. Maximum seasonal mean GWPs were calculated at 391.0 kg CO2 eq·ha−1 in rice husk biochar followed by sugarcane pressmud (mean GWP 387.0 kg CO2 eq·ha−1), while least GWPs were calculated at 285 - 305 kg CO2 eq·ha−1 with silicate fertilizer and Azolla biofertilizer amendments. Rice cultivar BRRI dhan 87 revealed comparatively higher seasonal cumulative CH4 fluxes, yield scaled CH4 flux and GWPs than BRRI dhan 71 during wet aman rice growing season;while BRRI dhan 89 showed higher cumulative CH4 flux and GWPs than BINA dhan 10 during irrigated boro rice cultivation. Conclusively, inorganic fertilizers may be partially (20% - 40% of the recommended NPKS) replaced with Vermicompost, azolla biofertilizer, silicate fertilizer and enriched sugarcane pressmud compost for sustainable rice production and decreasing GWPs under elevated air temperature condition.
文摘采用静态暗箱—气相色谱法对太湖地区水稻生态系统甲烷(CH4)排放进行田间原位观测,共设置无氮(NN)、常规(FP)、增产增效(YE)(增产10%~15%,氮肥利用率(NUE)提高20%~30%)、再增产(HY)(增产30%~40%)、再增效(HE)(NUE提高30%~50%)和保产增效(IE)(产量不变,NUE提高20%~30%)六种不同的栽培模式。结果表明,稻田CH4排放具有明显的季节变化,在水稻生长期间先升高后降低,从水稻移栽至抽穗期CH4排放通量占全生育期的93%~98%。不同栽培模式间CH4累积排放量差异显著(p<0.05),HY处理高达258.8 kg hm-2,显著高于未施有机肥各处理;单位稻谷产量CH4排放量差异不显著,平均为CO2 0.60 kg kg-1,提高稻谷产量的模式不会显著影响CH4排放;其中YE处理单位稻谷产量CH4排放量最低,为CO2 0.49 kg kg-1,可以同时实现增产、增效和减排,值得推广。
文摘The Yellow River Delta Wetland is one of the youngest wetlands, and also the most complete, extensive wetlands in China. The wetland in this delta is ecologically important due to their hydrologic attributes and their roles as ecotones between terrestrial and aquatic ecosystems. In the study, the spatial and temporal variation characteristics of CH4 and CO2 emission flux under five kinds of land use types in the wetland were investigated. The results indicated that the greenhouse gas emission flux, especially the CO2 and CH4, showed distinctly spatial and temporal variation under different land use types in the wetland. In the spring, the emission flux of CO2 was higher than that of CO2 in the autumn, and appeared negative in HW3 and HW4 in the autumn. CH4 emission flux of HW4 and HW5 was negative in the spring and autumn, which indicated that the CH4 emission process was net absorption. Among the five kinds of land use types, the CO2 emission flux of HW4 discharged the largest emission flux reaching 29.3 mg.m-2.h-1, but the CH4 emission flux of HW2 discharged the largest emission flux reaching 0.15 mg.m-2.h-1. From the estuary to the inland, the emission flux of CO2 was decreased at first and then appeared increasing trend, but the emission flux of CH4 was contrary to CO2.