In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the fi...In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.展开更多
Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses su...Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH_4/CO_2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH_4/CO_2 on different Nix/MgO(100) indicate the energy barriers of CH_4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity.展开更多
The kinetics of CO2 reforming of methane has been studied at 976-1033K on a commercial NiO/CaO/Al2O3 catalyst in a packed-bed continuous reactor. The reaction was carried out at atmospheric pressure and CO2/CH4 ratio...The kinetics of CO2 reforming of methane has been studied at 976-1033K on a commercial NiO/CaO/Al2O3 catalyst in a packed-bed continuous reactor. The reaction was carried out at atmospheric pressure and CO2/CH4 ratio > 2. The Hougen-Watson rate models were fitted to experimental data assuming the disso ciative adsorption of methane as the rate-determining step. The reaction rate showed an effective reaction order of about unity for CH4. The apparent activity energy was found to be 104 kJ·mol-1. Therefore the kinetic reaction parameters were determined and a possible reaction mechanism was proposed.展开更多
Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigate...Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃.展开更多
The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction o...The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.展开更多
Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, ...Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g.h) with a stoichiometric feed of CH4 and C02. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction.展开更多
A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those ...A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those of the conventional calcination catalyst. To achieve the same CH4 conversion, the conventional catalyst needed higher reaction temperature, about 50 ℃ higher than that of the N2 plasma-treated catalyst. After the evaluation test, the deactivation rate of the novel catalyst was 1.7%, compared with 15.2% for the conventional catalyst. Different from the characterization results of the calcined catalyst, a smaller average pore diameter and a higher specific surface area were obtained for the plasma-treated catalyst. The variations of the reduction peak temperatures and areas indicated that the catalyst reducibility was promoted by plasma assistance. The dispersion of nickel was also remarkably improved, which was helpful for controlling the ensemble size of metal atoms on the catalyst surface. The modification effect of plasma- assisted preparation on the surface property of alumina supported catalyst was speculated to account for the concentration increase of absorbed CO2. An enhancement of CO2 adsorption was propitious to the inhibition of carbon formation. The coke amount deposited on plasma treated catalyst was much smaller than that on the conventional catalyst.展开更多
A novel Ni-Co/SiO2 catalyst which exhibits high activity and excellent anti-carbon deposition property for CO2 reforming of CH4 to synthesis gas is developed.
A kinetic study of CH4 partial oxidation was performed using Chemkin Ⅱ simulation package with the GRI, NIST, Alexander and Leeds CH4 oxidation mechanisms. Comparing kinetic simulation results with thermodynamic anal...A kinetic study of CH4 partial oxidation was performed using Chemkin Ⅱ simulation package with the GRI, NIST, Alexander and Leeds CH4 oxidation mechanisms. Comparing kinetic simulation results with thermodynamic analysis indicates that GRIl .2-3.0, NIST and Alexander--0. l-0.3 mechanisms give a reasonable performance in describing CH4 partial oxidation while Alexander0.4 and the Leeds mechanisms fail to do so. Two distinct reaction zones are observed in the simulation results, which is different from the two-stage concept reported in the literature. Major global reactions within each reaction zone are identified.展开更多
Methane(CH4)is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM)using photocatalysts can realize the production of syngas(CO+H2)with low energy...Methane(CH4)is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM)using photocatalysts can realize the production of syngas(CO+H2)with low energy consumption.In this work,Ag0/Ag+-loaded SrTi03 nanocomposites were successfully prepared through a photodeposition method.When the loading amount of Ag is 0.5 mol%,the atom ratio of Ag+to Ag0 was found to be 51:49.In this case,a synergistic effect of Ago and Ag+was observed,in which Ago was proposed to improve the adsorption of H2 O to produce hydroxyl radicals and enhance the utilization of light energy as well as the separation of charge carriers.Meanwhile,Ag0 was regarded as the reduction reaction site with the function of an electron trapping agent.In addition,Ag+adsorbed the CH4 molecules and acted as the oxidation reaction sites in the process of photocatalytic SRM to further promote electron-hole separation.As a result,0.5 mol%Ag-SrTi03 exhibited enhancement of photocatalytic activity for SRM with the highest CO production rate of 4.3μmol g-1 h-1,which is ca.5 times higher than that of pure SrTi03.This work provides a facile route to fabricate nanocomposite with cocatalyst featuring different functions in promoting photocatalytic activity for SRM.展开更多
A series of Co/Mg-Al oxide samples, CoMgAl-x (x = (Mg + Co)]AI molar ratio of 1-5), were prepared by the self-combustion method followed by H2 reduction. The catalytic performance and stability of the samples wer...A series of Co/Mg-Al oxide samples, CoMgAl-x (x = (Mg + Co)]AI molar ratio of 1-5), were prepared by the self-combustion method followed by H2 reduction. The catalytic performance and stability of the samples were studied in dry reforming ofCH4. XRD and H2-TPR characterization results showed that the reduced CoMgAl-x samples mainly consisted of solid solution and spinel phases with cobalt particles. The spinel phases contained COB04 and ConMgl-nAl204 (0 〈 n 〈 1 ) varying with the (Mg + Co)/AI ratio, The effect of (Mg + Co)/A1 molar ratio on the catalytic behavior was investigated in detail and CoMgAI-3 exhibited the highest catalytic activity and stability among the catalysts studied.展开更多
基金The author would like to appreciate the funding supports of the State of Wyoming and China Scholarship Council.Without their supports,the international collaboration on clean energy technology development would have been impossible.
文摘In this study,the Powder River Basin(PRB)coal fast pyrolysis was conducted at 700°C in the atmosphere of syngas produced by CH4-CO2 reforming in two different patterns,including the double reactors pattern(the first reactor is for syngas production and the second is for coal pyrolysis)and double layers pattern(catalyst was at upper layer and coal was at lower layer).Besides,pure gases atmosphere including N2,H2,CO,H2-CO were also tested to investigate the mechanism of the coal pyrolysis under different atmospheres.The pyrolysis products including gas,liquid and char were characterized,the result showed that,compared with the inert atmosphere,the tar yield is improved with the reducing atmospheres,as well as the tar quality.The hydrogen partial pressure is the key point for that improvement.In the atmosphere of H2,the tar yield was increased by 31.3%and the contained BTX(benzene,toluene and xylene)and naphthalene were increased by 27.1%and 133.4%.The double reactors pattern also performed outstandingly,with 25.4%increment of tar yield and 25.0%and 79.4%for the BTX and naphthalene.The double layers pattern is not effective enough due to the low temperature(700°C)in which the Ni-based catalyst was not fully activated.
基金Supported by the National Natural Science Foundation of China(U1361202,51276120)
文摘Carbon deposition is sensitive to the metal particle sizes of supported Ni catalysts in CH_4/CO_2 reforming.To explore the reason of this phenomenon,Ni4,Ni8,and Ni12 which re flect the different cluster thicknesses supported on the MgO(100) slabs,have been employed to simulate Ni/MgO catalysts,and the reaction pathways of CH_4/CO_2 reforming on Nix/MgO(100) models are investigated by density functional theory.The reforming mechanisms of CH_4/CO_2 on different Nix/MgO(100) indicate the energy barriers of CH_4 dissociated adsorption,CH dissociation,and C oxidation three factors are all declining with the decrease of the Ni cluster sizes.The Hirshfeld charges analyses of three steps as described above show only Ni atoms in bottom two layers can obtain electrons from the MgO supporters,and the main electron transfer occurs between adsorbed species and their directly contacted Ni atoms.Due to more electron-rich Ni atoms in contact with the MgO supporters,the Ni/MgO catalysts with small Ni particles have a strong metal particle size effect and lead to its better catalytic activity.
基金the Consejo Nacional de Investigacions Cientificas y Tecnicas (CONICET).
文摘The kinetics of CO2 reforming of methane has been studied at 976-1033K on a commercial NiO/CaO/Al2O3 catalyst in a packed-bed continuous reactor. The reaction was carried out at atmospheric pressure and CO2/CH4 ratio > 2. The Hougen-Watson rate models were fitted to experimental data assuming the disso ciative adsorption of methane as the rate-determining step. The reaction rate showed an effective reaction order of about unity for CH4. The apparent activity energy was found to be 104 kJ·mol-1. Therefore the kinetic reaction parameters were determined and a possible reaction mechanism was proposed.
文摘Thermodynamic analysis of the reforming of methane with carbon dioxide alone ("dry reforming") and with carbon dioxide and steam together ("mixed reforming") is performed as part of a project which investigates the suitability of these endothermic reactions for the storage of solar thermal energy. The Gibbs free energy minimization method was employed to identify thermodynamically optimal operating conditions for dry reforming as well as mixed reforming with a desired H2/CO molar ratio of 2. The non-stoichiometric equilibrium model was developed using FactSage software to conduct the thermodynamic calculations for carbon formation, H2/CO ratio, CH4 conversion and H2 yield as a function of reaction temperature, pressure and reactant molar ratios. Thermodynamic calculations demonstrate that in the mixed reforming process, optimal operating conditions in a carbon-free zone are under H2O/CH4 /CO2 =1.0/1.0/0.5, p = 1 to 10 bar and T = 800 to 850℃ for the production of syngas with a H2 /CO molar ratio of 2. Under the optimal conditions, the maximum H2 yield of 88.0% is achieved at 1 bar and 850℃ with a maximum CH4 conversion of 99.3%. In the dry reforming process, a carbon formation regime is always present at a CO2/CH4 molar ratio of 1 for T = 700 1000℃ and p = 1-30 bar, whereas a carbon-free regime can be obtained at a CO2/CH4 molar ratio greater than 1.5 and T≥800℃.
基金supported by the National Natural Science Fundation of China(U1361202,51276120)~~
文摘The CO2reforming of CH4is studied over MgO‐promoted Ni catalysts,which were supported on alumina prepared from hydrotalcite.This presents an improved stability compared with non‐promoted catalysts.The introduction of the MgO promoter was achieved through the‘‘memory effect’’of the Ni‐Al hydrotalcite structure,and ICP‐MS confirmed that only0.42wt.%of Mg2+ions were added into the Ni‐Mg/Al catalyst.Although no differences in the Ni particle size and basicity strength were observed,the Ni‐Mg/Al catalyst showed a higher catalytic stability than the Ni/Al catalyst.A series of surface reaction experiments were used and showed that the addition of a MgO promoter with low concentration can promote CO2dissociation to form active surface oxygen arising from the formation of the Ni‐MgO interface sites.Therefore,the carbon‐resistance promotion by nature was suggested to contribute to an oxidative environment around Ni particles,which would increase the conversion of carbon residues from CH4cracking to yield CO on the Ni metal surface.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved.
基金supported by the National Natural Science Foundation of China (No. 20873013)
文摘Pt-CeO2-ZrO2/MgO (Pt-CZ/MgO) catalysts with 0.8 wt% Pt, 3.0 wt% CeO2 and 3.0 wt% ZrO2 were prepared by wet impregnation method. Support MgO was obtained using ion exchange resin method or using commercial MgO. XRD, BET, SEM, TEM, DTA-TG and CO2-TPD were used to characterize the catalysts. CH4-CO2 reforming to synthesis gas (syngas) was performed to test the catalytic behavior of the catalysts. The catalyst Pt-CZ/MgO-IE(D) prepared using ion exchange resin exhibits more regular structure, smaller and more unique particle sizes, and stronger basicity than the catalyst Pt-CZ/MgO prepared from commercial MgO. At 1073 K and atmospheric pressure, Pt-CZ/MgO-IE(D) catalyst has a higher activity and greater stability than Pt-CZ/MgO catalyst for CH4-CO2 reforming reaction at high gas hourly space velocity of 36000 mL/(g.h) with a stoichiometric feed of CH4 and C02. Activity measurement and characterization results demonstrate that modification of the support using ion exchange resin method can promote the surface structural property and stability, therefore enhancing the activity and stability for CH4-CO2 reforming reaction.
文摘A plasma-assisted method was employed to prepare Ni/γ-All2O3 catalyst for carbon dioxide reforming of methane reaction. The novel catalyst possessed higher activity and better coke-suppression performance than those of the conventional calcination catalyst. To achieve the same CH4 conversion, the conventional catalyst needed higher reaction temperature, about 50 ℃ higher than that of the N2 plasma-treated catalyst. After the evaluation test, the deactivation rate of the novel catalyst was 1.7%, compared with 15.2% for the conventional catalyst. Different from the characterization results of the calcined catalyst, a smaller average pore diameter and a higher specific surface area were obtained for the plasma-treated catalyst. The variations of the reduction peak temperatures and areas indicated that the catalyst reducibility was promoted by plasma assistance. The dispersion of nickel was also remarkably improved, which was helpful for controlling the ensemble size of metal atoms on the catalyst surface. The modification effect of plasma- assisted preparation on the surface property of alumina supported catalyst was speculated to account for the concentration increase of absorbed CO2. An enhancement of CO2 adsorption was propitious to the inhibition of carbon formation. The coke amount deposited on plasma treated catalyst was much smaller than that on the conventional catalyst.
基金the Zhejiang Provincial Science Foundation of China and by the Education Commission of Zhejiang Province.
文摘A novel Ni-Co/SiO2 catalyst which exhibits high activity and excellent anti-carbon deposition property for CO2 reforming of CH4 to synthesis gas is developed.
文摘A kinetic study of CH4 partial oxidation was performed using Chemkin Ⅱ simulation package with the GRI, NIST, Alexander and Leeds CH4 oxidation mechanisms. Comparing kinetic simulation results with thermodynamic analysis indicates that GRIl .2-3.0, NIST and Alexander--0. l-0.3 mechanisms give a reasonable performance in describing CH4 partial oxidation while Alexander0.4 and the Leeds mechanisms fail to do so. Two distinct reaction zones are observed in the simulation results, which is different from the two-stage concept reported in the literature. Major global reactions within each reaction zone are identified.
基金financial support from the Sichuan Provincial International Cooperation Project(Nos.2017HH0030,2019YFH0164)the National Natural Science Foundation of China(No.21403172)。
文摘Methane(CH4)is not only used as a fuel but also as a promising clean energy source for hydrogen generation.The steam reforming of CH4(SRM)using photocatalysts can realize the production of syngas(CO+H2)with low energy consumption.In this work,Ag0/Ag+-loaded SrTi03 nanocomposites were successfully prepared through a photodeposition method.When the loading amount of Ag is 0.5 mol%,the atom ratio of Ag+to Ag0 was found to be 51:49.In this case,a synergistic effect of Ago and Ag+was observed,in which Ago was proposed to improve the adsorption of H2 O to produce hydroxyl radicals and enhance the utilization of light energy as well as the separation of charge carriers.Meanwhile,Ag0 was regarded as the reduction reaction site with the function of an electron trapping agent.In addition,Ag+adsorbed the CH4 molecules and acted as the oxidation reaction sites in the process of photocatalytic SRM to further promote electron-hole separation.As a result,0.5 mol%Ag-SrTi03 exhibited enhancement of photocatalytic activity for SRM with the highest CO production rate of 4.3μmol g-1 h-1,which is ca.5 times higher than that of pure SrTi03.This work provides a facile route to fabricate nanocomposite with cocatalyst featuring different functions in promoting photocatalytic activity for SRM.
基金supported by the Ministry of Science and Technology(No.2009CB623506)the National Natural Science Foundation of China(No.21173050)Shanghai Leading Academic Discipline Project(No.B108)
文摘A series of Co/Mg-Al oxide samples, CoMgAl-x (x = (Mg + Co)]AI molar ratio of 1-5), were prepared by the self-combustion method followed by H2 reduction. The catalytic performance and stability of the samples were studied in dry reforming ofCH4. XRD and H2-TPR characterization results showed that the reduced CoMgAl-x samples mainly consisted of solid solution and spinel phases with cobalt particles. The spinel phases contained COB04 and ConMgl-nAl204 (0 〈 n 〈 1 ) varying with the (Mg + Co)/AI ratio, The effect of (Mg + Co)/A1 molar ratio on the catalytic behavior was investigated in detail and CoMgAI-3 exhibited the highest catalytic activity and stability among the catalysts studied.