期刊文献+
共找到1,602篇文章
< 1 2 81 >
每页显示 20 50 100
Performance of Gas-Steam Combined Cycle Cogeneration Units Influenced by Heating Network Terminal Steam Parameters
1
作者 Guanglu Xie Zhimin Xue +5 位作者 Bo Xiong Yaowen Huang Chaoming Chen Qing Liao Cheng Yang Xiaoqian Ma 《Energy Engineering》 EI 2024年第6期1495-1519,共25页
The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and p... The determination of source-side extracted heating parameters is of great significance to the economic operation of cogeneration systems.This paper investigated the coupling performance of a cogeneration heating and power system multidimensionally based on the operating characteristics of the cogeneration units,the hydraulic and thermodynamic characteristics of the heating network,and the energy loads.Taking a steam network supported by a gas-steam combined cycle cogeneration system as the research case,the interaction effect among the source-side prime movers,the heating networks,and the terminal demand thermal parameters were investigated based on the designed values,the plant testing data,and the validated simulation.The operating maps of the gas-steam combined cycle cogeneration units were obtained using THERMOFLEX,and the minimum source-side steam parameters of the steam network were solved using an inverse solution procedure based on the hydro-thermodynamic coupling model.The cogeneration operating maps indicate that the available operating domain considerably narrows with the rise of the extraction steam pressure and flow rate.The heating network inverse solution demonstrates that the source-side steam pressure and temperature can be optimized from the originally designed 1.11 MPa and 238.8°C to 1.074 MPa and 191.15°C,respectively.Under the operating strategy with the minimum source-side heating parameters,the power peak regulation depth remarkably increases to 18.30%whereas the comprehensive thermal efficiency decreases.The operation under the minimum source-side heating steam parameters can be superior to the originally designed one in the economy at a higher price of the heating steam.At a fuel price of$0.38/kg and the power to fuel price of 0.18 kg/(kW·h),the critical price ratio of heating steam to fuel is 119.1 kg/t.The influence of the power-fuel price ratio on the economic deviation appears relatively weak. 展开更多
关键词 Gas-steam combined cycle cogeneration of heating and power steam network inverse problem operating performance
下载PDF
A Financial Approach to Evaluate an Optimized Combined Cooling, Heat and Power System 被引量:20
2
作者 Shahab Bahrami Farahbakhsh Safe 《Energy and Power Engineering》 2013年第5期352-362,共11页
Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits su... Iran’s removing subsidy from energy carrier in four years ago leads to spike electricity price dramatically. This abrupt change increases the interest on distributed generation (DG) because of its several benefits such as lower electricity generation price. In Iran among all type of DGs, because of wide natural gas network infrastructure and several incentives that government legislated to support combined cooling, heat and power (CCHP) investors, this type of technology is more prevalent in comparison with other technologies. Between existing CCHP technologies, certain economic choices are to be taken into account. For different buildings with different load curves, suitable size and operation of CCHP should be calculated to make the project more feasible. If CCHP does not well suited for a position, then the whole energy efficiency would be plunged significantly. In this paper, a model to find the optimal size and operation of CCHP and auxiliary boiler for any users is proposed by considering an integrated view of electricity and natural gas network using GAMS software. Then this method is applying for a hospital in Tehran as a real case study. Finally, by applying COMFAR III software, useful financial parameters and sensitivity analysis are calculated. 展开更多
关键词 combined COOLING heat and power (Cchp) Energy HUB Optimal SIZE FINANCIAL Analysis
下载PDF
Simulation and performance analysis of organic Rankine cycle combined heat and power system
3
作者 刘玉兰 曹政 +1 位作者 陈九法 熊健 《Journal of Southeast University(English Edition)》 EI CAS 2015年第4期489-495,共7页
To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state.... To improve the overall thermal efficiency of the organic Rankine cycle( ORC), a simulation study was carried out for a combined heat and power( CHP) system, using the Redlich-Kuang-Soave( RKS) equation of state. In the system,R245 fa was selected as the working fluid. A scroll expander was modeled with empirical isentropic expansion efficiency.Plate heat exchangers were selected as the evaporator and the condenser, and detailed heat transfer models were programmed for both one-phase and two-phase regions. Simulations were carried out at seven different heat source temperatures( 80,90, 100, 110, 120, 130, 140 ℃) in combination with eight different heat sink temperatures( 20, 25, 30, 35, 40, 45, 50,55 ℃). Results showthat in the ORC without an internal heat exchanger( IHE), the optimum cycle efficiencies are in the range of 7. 0% to 7. 3% when the temperature differences between the heat source and heat sink are in the range of 70 to90 ℃. Simulations on CHP reveal that domestic hot water can be produced when the heat sink inlet temperature is higher than40 ℃, and the corresponding exergy efficiency and overall thermal efficiency are 29% to 56% and 87% to 90% higher than those in the non-CHP ORC, respectively. It is found that the IHE has little effect on the improvement of work output and efficiencies for the CHP ORC. 展开更多
关键词 organic Rankine cycle combined heat and power cycle efficiency exergy efficiency thermal efficiency
下载PDF
Solution of Combined Heat and Power Economic Dispatch Problem Using Direct Optimization Algorithm 被引量:1
4
作者 Dedacus N. Ohaegbuchi Olaniyi S. Maliki +1 位作者 Chinedu P. A. Okwaraoka Hillary Erondu Okwudiri 《Energy and Power Engineering》 CAS 2022年第12期737-746,共10页
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr... This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided. 展开更多
关键词 Economic Dispatch Lagrange Multiplier Algorithm combined heat and power Constraints and Objective Functions Optimal Dispatch
下载PDF
Initiative Optimization Operation Strategy and Multi-objective Energy Management Method for Combined Cooling Heating and Power 被引量:4
5
作者 Feng Zhao Chenghui Zhang Bo Sun 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第4期385-393,共9页
This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative ... This paper proposed an initiative optimization operation strategy and multi-objective energy management method for combined cooling heating and power U+0028 CCHP U+0029 with storage systems. Initially, the initiative optimization operation strategy of CCHP system in the cooling season, the heating season and the transition season was formulated. The energy management of CCHP system was optimized by the multi-objective optimization model with maximum daily energy efficiency, minimum daily carbon emissions and minimum daily operation cost based on the proposed initiative optimization operation strategy. Furthermore, the pareto optimal solution set was solved by using the niche particle swarm multi-objective optimization algorithm. Ultimately, the most satisfactory energy management scheme was obtained by using the technique for order preference by similarity to ideal solution U+0028 TOPSIS U+0029 method. A case study of CCHP system used in a hospital in the north of China validated the effectiveness of this method. The results showed that the satisfactory energy management scheme of CCHP system was obtained based on this initiative optimization operation strategy and multi-objective energy management method. The CCHP system has achieved better energy efficiency, environmental protection and economic benefits. © 2014 Chinese Association of Automation. 展开更多
关键词 CARBON COOLING Cooling systems Energy efficiency Energy management heatING Multiobjective optimization OPTIMIZATION Pareto principle
下载PDF
Biomass Combined Heat and Power Generation for Anticosti Island: A Case Study
6
作者 Theleli Abbas Mohamad Issa +1 位作者 Adrian Ilinca Ali El-Ali 《Journal of Power and Energy Engineering》 2020年第3期64-87,共24页
Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the ste... Combined heat and power (CHP) plants (co-generation plants) using biomass as fuel, can be an interesting alternative to the predominant electrical heating in Canada. The biomass-fueled boiler provides heat for the steam cycle which in turn generates electricity from the generator connected to the steam turbine. In addition, heat from the process is supplied to a district heating system. The heat can be extracted from the system in a number of ways, by using a back-pressure steam turbine, an extraction steam turbine or by extracting heat directly from the boiler. The objective of the paper is the design, modeling and simulation of such CHP plant. The plant should be sized for providing electric-ity and heat for the Anticosti Island community in Quebec. 展开更多
关键词 chp (combined heat and power) Anticosti ISLAND COGENERATION heating Network RET (Renewable Energy Technologies) FEASIBILITY
下载PDF
Thermo-economic Investigation of an Enhanced Geothermal System Organic Rankine Cycle and Combined Heating and Power System
7
作者 WANG Lingbao BU Xianbiao LI Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期1958-1966,共9页
As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon... As a potentially viable renewable energy, Enhanced Geothermal Systems(EGSs) extract heat from hot dry rock(HDR) reservoirs to produce electricity and heat, which promotes the progress towards carbon peaking and carbon neutralization. The main challenge for EGSs is to reduce the investment cost. In the present study, thermo-economic investigations of EGS projects are conducted. The effects of geofluid mass flow rate, wellhead temperature and loss rate on the thermo-economic performance of the EGS organic Rankine cycle(ORC) are studied. A performance comparison between EGS-ORC and the EGS combined heating and power system(CHP) is presented. Considering the CO_(2)emission reduction benefits, the influence of carbon emission trading price on the levelized cost of energy(LCOE) is also presented. It is indicated that the geofluid mass flow rate is a critical parameter in dictating the success of a project. Under the assumed typical working conditions, the LCOE of EGS-ORC and EGS-CHP systems are 24.72 and 16.1 cents/k Wh, respectively. Compared with the EGS-ORC system, the LCOE of the EGS-CHP system is reduced by 35%. EGS-CHP systems have the potential to be economically viable in the future. With carbon emission trading prices of 12.76 USD/ton, the LCOE can be reduced by approximately 8.5%. 展开更多
关键词 enhanced geothermal system organic Rankine cycle combined heating and power system thermo-economic investigation carbon emission reduction
下载PDF
Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region
8
作者 Jean-Ann James Valerie M. Thomas +2 位作者 Arka Pandit Duo Li John C. Crittenden 《Engineering》 SCIE EI 2016年第4期470-480,共11页
The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the po... The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP) systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2) and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling) demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamilv residential buildings. 展开更多
关键词 combined cooling heating and power (Cchp Air-cooled microturbines Distributed energy generation Water for energy production Net metering
下载PDF
Comparative Assessment of Combined-Heat-and-Power Performance of Small-Scale Aero-Derivative Gas Turbine Cycles
9
作者 Barinyima Nkoi Barinaadaa Thaddeus Lebele-Alawa 《Journal of Power and Energy Engineering》 2015年第9期20-32,共13页
This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste e... This paper considers comparative assessment of combined-heat-and-power (CHP) performance of three small-scale aero-derivative industrial gas turbine cycles in the petrochemical industry. The bulk of supposedly waste exhaust heat associated with gas turbine operation has necessitated the need for CHP application for greater fuel efficiency. This would render gas turbine cycles environ-mentally-friendly, and more economical. However, choosing a particular engine cycle option for small-scale CHP requires information about performances of CHP engine cycle options. The investigation encompasses comparative assessment of simple cycle (SC), recuperated (RC), and intercooled-recuperated (ICR) small-scale aero-derivative industrial gas turbines combined-heat-and-power (SS-ADIGT-CHP). Small-scale ADIGT engines of 1.567 MW derived from helicopter gas turbines are herein analysed in combined-heat-and-power (CHP) application. It was found that in this category of ADIGT engines, better CHP efficiency is exhibited by RC and ICR cycles than SC engine. The CHP efficiencies of RC, ICR, and SC small-scale ADIGT-CHP cycles were found to be 71%, 60%, and 56% respectively. Also, RC engine produces the highest heat recovery steam generator (HRSG) duty. The HRSG duties were found to be 3171.3 kW for RC, 2621.6 kW for ICR, and 3063.1 kW for SC. These outcomes would actually meet the objective of aiding informed preliminary choice of small-scale ADIGT engine cycle options for CHP application. 展开更多
关键词 Aero-Derivative Gas Turbines combined-heat-and-power heat Recovery Steam GENERATOR chp Efficiency
下载PDF
基于CHP机组碳排放分析的综合能源系统低碳调度优化方法 被引量:1
10
作者 李家桐 谢宁 +1 位作者 王承民 熊康 《智慧电力》 北大核心 2024年第6期31-37,83,共8页
针对现有研究对于热电联产(CHP)机组碳排放计算不符合实际物理特性的问题,提出了基于CHP碳排放分析的综合能源系统(IES)低碳调度优化方法。从CHP机组内部结构入手,分析CHP机组内部各部分之间能量的传递过程,绘制CHP机组功率与碳排流向图... 针对现有研究对于热电联产(CHP)机组碳排放计算不符合实际物理特性的问题,提出了基于CHP碳排放分析的综合能源系统(IES)低碳调度优化方法。从CHP机组内部结构入手,分析CHP机组内部各部分之间能量的传递过程,绘制CHP机组功率与碳排流向图,列写各个部分的功率平衡方程,得到CHP机组排放废气的等效热功率;计及碳排放量与废气排放速率的关系,结合废气排放的热力学方程,得到CHP机组废气排放速率与输入气流量及输出功率的关系;提出基于CHP机组碳排放分析的IES低碳调度优化模型,以总运行成本最小为目标,求解IES低碳调度优化结果;通过算例分析不同CHP机组运行方式下的优化调度结果,并与现有方法进行对比,验证了所提模型在降低碳排放方面的有效性。 展开更多
关键词 热电联产机组 综合能源系统 碳排放分析 调度优化
下载PDF
Multi-Objective Optimization Based on Life Cycle Assessment for Hybrid Solar and Biomass Combined Cooling,Heating and Power System
11
作者 LIU Jiejie LI Yao +1 位作者 MENG Xianyang WU Jiangtao 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期931-950,共20页
The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a mult... The complementary of biomass and solar energy in combined cooling,heating and power(CCHP)system provides an efficient solution to address the energy crisis and environmental pollutants.This work aims to propose a multi-objective optimization model based on the life cycle assessment(LCA)method for the optimal design of hybrid solar and biomass system.The life-cycle process of the poly-generation system is divided into six phases to analyze energy consumption and greenhouse gas emissions.The comprehensive performances of the hybrid system are optimized by incorporating the evaluation criteria,including environmental impact in the whole life cycle,renewable energy contribution and economic benefit.The non-dominated sorting genetic algorithmⅡ(NSGA-Ⅱ)with the technique for order preference by similarity to ideal solution(TOPSIS)method is employed to search the Pareto frontier result and thereby achieve optimal performance.The developed optimization methodology is used for a case study in an industrial park.The results indicate that the best performance from the optimized hybrid system is reached with the environmental impact load reduction rate(EILRR)of 46.03%,renewable energy contribution proportion(RECP)of 92.73%and annual total cost saving rate(ATCSR)of35.75%,respectively.By comparing pollutant-eq emissions of different stages,the operation phase emits the largest pollutant followed by the phase of raw material acquisition.Overall,this study reveals that the proposed multi-objective optimization model integrated with LCA method delivers an alternative path for the design and optimization of more sustainable CCHP system. 展开更多
关键词 combined cooling heating and power system solar-biomass multi-objective optimization life cycle assessment optimal design
原文传递
Robust optimal dispatch strategy of integrated energy system considering CHP-P2G-CCS
12
作者 Bin Zhang Yihui Xia Xiaotao Peng 《Global Energy Interconnection》 EI CSCD 2024年第1期14-24,共11页
Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model... Integrated energy systems(IESs)can improve energy efficiency and reduce carbon emissions,essential for achieving peak carbon emissions and carbon neutrality.This study investigated the characteristics of the CHP model considering P2G and carbon capture systems,and a two-stage robust optimization model of the electricity-heat-gascold integrated energy system was developed.First,a CHP model considering the P2G and carbon capture system was established,and the electric-thermal coupling characteristics and P2G capacity constraints of the model were derived,which proved that the model could weaken the electric-thermal coupling characteristics,increase the electric power regulation range,and reduce carbon emissions.Subsequently,a two-stage robust optimal scheduling model of an IES was constructed,in which the objective function in the day-ahead scheduling stage was to minimize the start-up and shutdown costs.The objective function in the real-time scheduling stage was to minimize the equipment operating costs,carbon emission costs,wind curtailment,and solar curtailment costs,considering multiple uncertainties.Finally,after the objective function is linearized with a ψ-piecewise method,the model is solved based on the C&CG algorithm.Simulation results show that the proposed model can effectively absorb renewable energy and reduce the total cost of the system. 展开更多
关键词 combined heat and power power-to-gas Carbon capture system Integrated energy system Robust optimization
下载PDF
并网且上网模式下含复合储能CCHP系统能量管理策略优化研究
13
作者 陈程 林仕立 +1 位作者 胡安信 张先勇 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期3981-3992,共12页
冷热电联供(combined cooling heating and power, CCHP)系统是工业产业园区、建筑用户能源利用过程实现双碳目标的重要举措。针对CCHP系统产用能不平衡、设备耦合相关、并网且上网模式等影响,本文构建了含电池储能系统和水箱蓄热系统的... 冷热电联供(combined cooling heating and power, CCHP)系统是工业产业园区、建筑用户能源利用过程实现双碳目标的重要举措。针对CCHP系统产用能不平衡、设备耦合相关、并网且上网模式等影响,本文构建了含电池储能系统和水箱蓄热系统的CCHP系统,并以运行成本和燃料消耗量为目标,建立CCHP系统能量管理策略的多目标优化函数;在此基础上,重点考虑约束条件和拥挤度算子对非支配排序遗传算法(nondominated sorting genetic algorithm-Ⅱ, NSGA-Ⅱ)搜索性能的影响,并利用改进型NSGA-Ⅱ算法实现CCHP系统能量管理策略的优化求解。结果表明:在并网且上网模式下,含复合储能CCHP系统相比无储能CCHP系统,夏季典型日的日运行成本和燃料消耗分别可节约0.89%和2.11%,冬季典型日可分别节约27.70%和7.30%,年运行成本和年总能量消耗则分别可减少11.11%和6.06%,可知基于改进型NSGA-Ⅱ算法所获得的含复合储能CCHP系统能量管理策略具有较好的能量调控性能。 展开更多
关键词 冷热电联供 并网且上网 复合储能 改进型NSGA-Ⅱ算法
下载PDF
基于改进MOEAD算法的CCHP系统运行优化
14
作者 汪永康 黄伟 《计算机仿真》 2024年第6期114-119,128,共7页
通过综合考虑冷热电联供(CCHP)系统中各类约束条件,基于夏冬两季典型日负荷需求曲线,构建了吸收式制冷机、燃气内燃机和燃气锅炉等主要机组设备模型。针对区域内系统经济性与环保性两者的协调优化问题,提出一种改进的基于分解的多目标... 通过综合考虑冷热电联供(CCHP)系统中各类约束条件,基于夏冬两季典型日负荷需求曲线,构建了吸收式制冷机、燃气内燃机和燃气锅炉等主要机组设备模型。针对区域内系统经济性与环保性两者的协调优化问题,提出一种改进的基于分解的多目标进化算法(multi-objective optimization algorithm based on Decomposition, MOEA/D)对系统模型进行多目标优化求解。最后以某商业区能源站为实际算例,通过Matlab进行仿真。仿真结果显示所提出的系统优化方法,能使该能源站的运行更加经济与高效。 展开更多
关键词 基于分解的多目标进化算法 冷热电联供 多目标优化 典型日
下载PDF
Parametric optimization of power system for a micro-CCHP system 被引量:2
15
作者 李应林 张小松 《Journal of Southeast University(English Edition)》 EI CAS 2010年第2期297-301,共5页
The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m... The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5. 展开更多
关键词 combined cooling heating and power distributed energy supply battery bank ENGINE
下载PDF
基于穷举搜索法的城市建筑CCHP系统优化配置 被引量:1
16
作者 韩旭 周峻毅 +3 位作者 王小东 吴迪 李鹏 韩中合 《动力工程学报》 CAS CSCD 北大核心 2023年第7期923-929,共7页
冷-热-电三联供系统可实现能量的高效梯级利用,有利于实现“碳达峰、碳中和”。基于穷举搜索法构建了一套包含燃气热电联产系统、燃气锅炉、电制冷机、吸收式制冷机和水-水换热器的楼宇级冷-热-电三联供系统,并以北京3种典型的楼宇建筑... 冷-热-电三联供系统可实现能量的高效梯级利用,有利于实现“碳达峰、碳中和”。基于穷举搜索法构建了一套包含燃气热电联产系统、燃气锅炉、电制冷机、吸收式制冷机和水-水换热器的楼宇级冷-热-电三联供系统,并以北京3种典型的楼宇建筑为研究对象,研究了冷-热-电三联供系统在不同类型负荷下的容量配置、系统运行参数、经济性和减排情况并进行相应敏感性分析。结果表明:与分产系统相比,商业建筑、办公建筑、居住建筑的成本节约率分别为21.76%、16.72%和9.17%,二氧化碳减排率分别为15.80%、10.42%和4.41%,系统能源价格分别下降39.85%、49.04%和41.29%;研究结果可为冷-热-电三联供系统优化提供参考。 展开更多
关键词 冷热电三联供 容量优化 节能减排 系统成本 能量交互
下载PDF
Thermodynamic Analysis of Solid Oxide Fuel Cell Based Combined Cooling,Heating,and Power System Integrated with Solar-Assisted Electrolytic Cell 被引量:2
17
作者 GAO Yuefen YAO Wenqi +1 位作者 WANG Jiangjiang CUI Zhiheng 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第1期93-108,共16页
Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power sy... Syngas fuel such as hydrogen and carbon monoxide generated by solar energy is a promising method to use solar energy and overcome its fluctuation effectively.This study proposes a combined cooling,heating,and power system using the reversible solid oxide fuel cell assisted by solar energy to produce solar fuel and then supply energy products for users during the period without solar radiation.The system runs a solar-assisted solid oxide electrolysis cell mode and a solid oxide fuel cell mode.The thermodynamic models are constructed,and the energetic and exergetic performances are analyzed.Under the design work conditions,the SOEC mode’s overall system energy and exergy efficiencies are 19.0%and 20.5%,respectively.The electrical,energy and exergy efficiencies in the SOFC mode are 51.4%,71.3%,and 45.2%,respectively.The solid oxide fuel cell accounts for 60.0%of total exergy destruction,caused by the electrochemical reactions’thermodynamic irreversibilities.The increase of operating temperature of solid oxide fuel cell from 800℃to 1050℃rises the exergy and energy efficiencies by 11.3%and 12.3%,respectively.Its pressure from 0.2 to 0.7 MPa improves electrical efficiency by 13.8%while decreasing energy and exergy efficiencies by 5.2%and 6.0%,respectively. 展开更多
关键词 solid oxide electrolysis cell(SOEC) solid oxide fuel cell(SOFC) solar energy combined cooling heatING and power(Cchp) exergy analysis
原文传递
Stochastic Accelerated Alternating Direction Method of Multipliers for Hedging Communication Noise in Combined Heat and Power Dispatch 被引量:1
18
作者 Zhigang Li Xinyu Liang +4 位作者 Fan Hu Wen Xiong Renbo Wu J.H.Zheng Q.H.Wu 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第2期696-706,共11页
Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different... Combined heat and power dispatch(CHPD)opens a new window for increasing operational flexibility and reducing wind power curtailment.Electric power and district heating systems are independently controlled by different system operators;therefore,a decentralized solution paradigm is necessary for CHPD,in which only minor boundary information is required to be exchanged via a communication network.However,a nonideal communication environment with noise could lead to divergence or incorrect solutions of decentralized algorithms.To bridge this gap,this paper proposes a stochastic accelerated alternating direction method of multipliers(SA-ADMM)for hedging communication noise in CHPD.This algorithm provides a general framework to address more types of constraint sets and separable objective functions than the existing stochastic ADMM.Different from the single noise sources considered in the existing stochastic approximation methods,communication noise from multiple sources is addressed in both the local calculation and the variable update stages.Case studies of two test systems validate the effectiveness and robustness of the proposed SAADMM. 展开更多
关键词 Alternating direction method of multipliers combined heat and power dispatch communication noise decentralized optimization
原文传递
考虑分布式光伏发电特性的CHPV组合优化调度 被引量:4
19
作者 孙大伟 田蓓 +2 位作者 刘刚 梁剑 王丽芳 《电力系统及其自动化学报》 CSCD 北大核心 2023年第3期102-107,共6页
近年来光伏装机容量逐年提升,为进一步提高光伏的消纳能力,满足居民的电热需求,本文首先分析分布式光伏的发电特性,提出一种由微型热电联供机组和光伏机组的组合机组,简称CHPV组合,构建以运行成本最低为目标的CHPV组合优化模型,采用K-me... 近年来光伏装机容量逐年提升,为进一步提高光伏的消纳能力,满足居民的电热需求,本文首先分析分布式光伏的发电特性,提出一种由微型热电联供机组和光伏机组的组合机组,简称CHPV组合,构建以运行成本最低为目标的CHPV组合优化模型,采用K-means聚类方法对某地一年的光伏数据进行聚类,生成3个典型的光伏出力场景并代入CHPV组合优化模型中,采用Cplex对本文所提模型进行仿真验证。结果表明,本文所构建的CHPV组合可有效满足居民不同季节下的电热需求和提高光伏的消纳能力。 展开更多
关键词 分布式光伏 微型热电联供机组 季节特性 组合优化 电热需求
下载PDF
Optimal Scheduling Method of Cogeneration System with Heat Storage Device Based on Memetic Algorithm 被引量:1
20
作者 Haibo Li YibaoWang +2 位作者 Xinfu Pang Wei Liu Xu Zhang 《Energy Engineering》 EI 2023年第2期317-343,共27页
Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To imp... Electric-heat coupling characteristics of a cogeneration system and the operating mode of fixing electricity with heat are the main reasons for wind abandonment during the heating season in the Three North area.To improve the wind-power absorption capacity and operating economy of the system,the structure of the system is improved by adding a heat storage device and an electric boiler.First,aiming at the minimum operating cost of the system,the optimal scheduling model of the cogeneration system,including a heat storage device and electric boiler,is constructed.Second,according to the characteristics of the problem,a cultural gene algorithm program is compiled to simulate the calculation example.Finally,through the system improvement,the comparison between the conditions before and after and the simulation solutions of similar algorithms prove the effectiveness of the proposed scheme.The simulation results show that adding the heat storage device and electric boiler to the scheduling optimization process not only improves the wind power consumption capacity of the cogeneration system but also reduces the operating cost of the system by significantly reducing the coal consumption of the unit and improving the economy of the system operation.The cultural gene algorithm framework has both the global evolution process of the population and the local search for the characteristics of the problem,which has a better optimization effect on the solution. 展开更多
关键词 combined heat and power generation heat storage device memetic algorithm simulated annealing wind abandonment
下载PDF
上一页 1 2 81 下一页 到第
使用帮助 返回顶部