Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmeth...In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.展开更多
A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Ves...A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and Nizhnik Novikov-Vesselov equation, both the Lie point symmetry groups and the non-Lie symmetry groups are obtained. The Lie symmetry groups obtained via traditional Lie approaches are only speciai cases. Furthermore, the expressions of the exact finite transformations of the Lie groups are much simpler than those obtained via the standard approaches.展开更多
文摘Using the (2+1)-dimensional Broer-Kaup equation as an simple example, a new direct method is developed to find symmetry groups and symmetry algebras and then exact solutions of nonlinear mathematical physical equations.
基金Supported by the National Natural Science Foundation of China under Grant No. 10735030Shanghai Leading Academic Discipline Project under Grant No. B412+2 种基金National Natural Science Foundation of China under Grant No. 90718041Program for Changjiang Scholars and Innovative Research Team in University under Grant No. IRT0734K.C. Wong Magna Fund in Ningbo University
文摘In this paper, first, we employ classic Lie symmetry groups approach to obtain the Lie symmetry groupsof the well-known (2+1)-dimensional Generalized Sasa-Satsuma (GSS) equation. Second, based on a modified directmethod proposed by Lou [J. Phys. A: Math. Gen. 38 (2005) L129], more general symmetry groups are obtained andthe relationship between the new solution and known solution is set up. At the same time, the Lie symmetry groupsobtained are only special cases of the more general symmetry groups. At last, some exact solutions of GSS equationsare constructed by the relationship obtained in the paper between the new solution and known solution.
基金The project supported by the National 0utstanding Youth Foundation of China under Grant No. 19925522 and the National Natural Science Foundation of China under Grant Nos. 90203001, 10475055. The authors are in debt to thank helpful discussions with Drs. X.Y. Tang, C.L. Chen, Y. Chen, H.C. Hu, X.M. Qian, B. Tong, and W.R. Cai.
文摘A modified direct method is developed to find finite symmetry groups of nonlinear mathematical physics systems. Applying the modified direct method to the well-known (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equation and Nizhnik Novikov-Vesselov equation, both the Lie point symmetry groups and the non-Lie symmetry groups are obtained. The Lie symmetry groups obtained via traditional Lie approaches are only speciai cases. Furthermore, the expressions of the exact finite transformations of the Lie groups are much simpler than those obtained via the standard approaches.