In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5Hdiindolo[3,2-a:3',2'-c]-carbazole(TBDI),in this article TBDI is used as an active layer but not a buffer...In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5Hdiindolo[3,2-a:3',2'-c]-carbazole(TBDI),in this article TBDI is used as an active layer but not a buffer layer in a photodetector(PD),organic light-emitting diode(OLED),and organic photovoltaic cell(OPV) for the first time.Firstly,the absorption and emission spectra of a blend layer comprised of TBDI and electron-transporting material bis-(2-methyl-8-quinolinate) 4-phenylphenolate(BAlq) are investigated.Based on the absorption properties,an organic PD with a peak absorption at 320 nm is fabricated,and a relatively-high detectivity of 2.44×10^(11) cm· Hz^(1/2)/W under 320-nm illumination is obtained.The TBDI/tris(8-hydroxyquinoline) aluminum(Alq_3) OLED device exhibits a comparable external quantum efficiency and current efficiency to a traditional 4,4-bis[N-(l-naphthyl)-N-phenyl-amino]biphenyl(α-NPD)/Alq_3 OLED.A C_(70)-based Schottky junction with 5 wt%-TBDI yields a power conversion efficiency of 5.0%,which is much higher than 1.7%for an α-NPD-based junction in the same configuration.These results suggest that TBDI has some promising properties which are in favor of the hole-transporting in Schottky junctions with a low-concentration donor.展开更多
Two novel constituents were isolated from the roots of Chinese medicinal herbs, Salvia miltiorrhiza. Their structures were determined by spectroscopic technique. The compounds were named 13,14-dihydroxy-15-methyl-benz...Two novel constituents were isolated from the roots of Chinese medicinal herbs, Salvia miltiorrhiza. Their structures were determined by spectroscopic technique. The compounds were named 13,14-dihydroxy-15-methyl-benzo[2,3-a]-7,7-dimethyl-12-oxa-tricyclo[4,4,21.4,0]dodecane(1) and 16-methyl-tropono[2,3-c]-7,7-dimethyl-12-oxa-tricyclo[4,4,21.4,0]dodecane(2).展开更多
The optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) were used to as-sess the influence of micro-addition of (La+Yb) on the microstructure and mechanical performan...The optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) were used to as-sess the influence of micro-addition of (La+Yb) on the microstructure and mechanical performance of the AlSi10Cu3 alloy in heat treatment conditions. It was shown that the appropriate (La+Yb)addition (0.3 wt.% or 0.6 wt.%) transformed the needle-likeβ-Al5FeSi phase into Chinese script or sphericalα-Al8Fe2Si phase. Eutectic silicon refined the long needle-like particles into granular or round particles at 0.6 wt.% (La+Yb) content. Moreover, the La3Al11 and YbAl3 phases acted as strengthening phases during the heat treatment processing in the alloy with the addition of (La+Yb). Consequently, the alloy with 0.6 wt.% (La+Yb) exhibited an en-hanced mechanical properties response with ultimate tensile strength, elongation, and hardness at 69.35%, 113.26% and 23.61% higher than those of the unmodified alloy, respectively. Further addition (0.9 wt.%) of (La+Yb) resulted in the increasing of the black acicular RE-rich intermetallics during heat treatment, which could aggravate the situation of stress concentration leading to deteriora-tion of the mechanical properties of alloy.展开更多
基金supported by the Funding Program for World-Leading Innovative R&D on Science and Technology(FIRST)from JSPSthe Fund from the Science and Technology Commission of Shanghai Municipality,China(Grant Nos.14DZ2280900 and 14XD1401800)the Natural Science Foundation of Shanghai(Grant No.15ZR1416600)
文摘In order to explore the novel application of the transparent hole-transporting material 5,10,15-tribenzyl-5Hdiindolo[3,2-a:3',2'-c]-carbazole(TBDI),in this article TBDI is used as an active layer but not a buffer layer in a photodetector(PD),organic light-emitting diode(OLED),and organic photovoltaic cell(OPV) for the first time.Firstly,the absorption and emission spectra of a blend layer comprised of TBDI and electron-transporting material bis-(2-methyl-8-quinolinate) 4-phenylphenolate(BAlq) are investigated.Based on the absorption properties,an organic PD with a peak absorption at 320 nm is fabricated,and a relatively-high detectivity of 2.44×10^(11) cm· Hz^(1/2)/W under 320-nm illumination is obtained.The TBDI/tris(8-hydroxyquinoline) aluminum(Alq_3) OLED device exhibits a comparable external quantum efficiency and current efficiency to a traditional 4,4-bis[N-(l-naphthyl)-N-phenyl-amino]biphenyl(α-NPD)/Alq_3 OLED.A C_(70)-based Schottky junction with 5 wt%-TBDI yields a power conversion efficiency of 5.0%,which is much higher than 1.7%for an α-NPD-based junction in the same configuration.These results suggest that TBDI has some promising properties which are in favor of the hole-transporting in Schottky junctions with a low-concentration donor.
文摘Two novel constituents were isolated from the roots of Chinese medicinal herbs, Salvia miltiorrhiza. Their structures were determined by spectroscopic technique. The compounds were named 13,14-dihydroxy-15-methyl-benzo[2,3-a]-7,7-dimethyl-12-oxa-tricyclo[4,4,21.4,0]dodecane(1) and 16-methyl-tropono[2,3-c]-7,7-dimethyl-12-oxa-tricyclo[4,4,21.4,0]dodecane(2).
基金Project supported by the National Natural Science Foundation of China(51364035)Ministry of Education tied up with the Special Research Fund for the Doctoral Program for Higher School(20133601110001)Loading Program of Science and Technology of College of Jiangxi Province(KJLD14003)
文摘The optical microscopy, scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) were used to as-sess the influence of micro-addition of (La+Yb) on the microstructure and mechanical performance of the AlSi10Cu3 alloy in heat treatment conditions. It was shown that the appropriate (La+Yb)addition (0.3 wt.% or 0.6 wt.%) transformed the needle-likeβ-Al5FeSi phase into Chinese script or sphericalα-Al8Fe2Si phase. Eutectic silicon refined the long needle-like particles into granular or round particles at 0.6 wt.% (La+Yb) content. Moreover, the La3Al11 and YbAl3 phases acted as strengthening phases during the heat treatment processing in the alloy with the addition of (La+Yb). Consequently, the alloy with 0.6 wt.% (La+Yb) exhibited an en-hanced mechanical properties response with ultimate tensile strength, elongation, and hardness at 69.35%, 113.26% and 23.61% higher than those of the unmodified alloy, respectively. Further addition (0.9 wt.%) of (La+Yb) resulted in the increasing of the black acicular RE-rich intermetallics during heat treatment, which could aggravate the situation of stress concentration leading to deteriora-tion of the mechanical properties of alloy.