Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climat...Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climate Centre(NCC)of the China Meteorological Administration(CMA)by including new model members and expanding prediction products.A comprehensive assessment of the performance of the upgraded CMME during its hindcast(1993–2016)and real-time prediction(2021–present)periods is conducted in this study.The results demonstrate that CMMEv2.0 outperforms all the individual models by capturing more realistic equatorial sea surface temperature(SST)variability.It exhibits better prediction skills for precipitation and 2-m temperature anomalies,and the improvements in prediction skill of CMMEv2.0 are significant over East Asia.The superiority of CMMEv2.0 can be attributed to its better projection of El Niño–Southern Oscillation(ENSO;with the temporal correlation coefficient score for Niño3.4 index reaching 0.87 at 6-month lead)and ENSO-related teleconnections.As for the real-time prediction in recent three years,CMMEv2.0 has also yielded relatively stable skills;it successfully predicted the primary rainbelt over northern China in summers of 2021–2023 and the warm conditions in winters of 2022/2023.Beyond that,ensemble sampling experiments indicate that the CMMEv2.0 skills become saturated after the ensemble model number increased to 5–6,indicating that selection of only an optimal subgroup of ensemble models could benefit the prediction performance,especially over the extratropics,yet the underlying reasons await future investigation.展开更多
Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of ...Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of Chinese climate models and imported forecast data of some international operational models, the National Climate Center of the China Meteorological Administration has established the China multi-model ensemble prediction system version 1.0 (CMMEv1.0) for monthly-seasonal prediction of primary climate variability modes and climate elements. We verified the real-time forecasts of CMMEv1.0 for the 2018 flood season (June-August) starting from March 2018 and evaluated the 1991-2016 hindcasts of CMMEv1.0. The results show that CMMEv1.0 has a significantly high prediction skill for global sea surface temperature (SST) anomalies, especially for the El Nino-Southern Oscillation (ENSO) in the tropical central-eastern Pacific. Additionally, its prediction skill for the North Atlantic SST triple (NAST) mode is high, but is relatively low for the Indian Ocean Dipole (IOD) mode. Moreover, CMMEv1.0 has high skills in predicting the western Pacific subtropical high (WPSH) and East Asian summer monsoon (EASM) in the June-July-August (JJA) season. The JJA air temperature in the CMMEv1.0 is predicted with a fairly high skill in most regions of China, while the JJA precipitation exhibits some skills only in northwestern and eastern China. For real-time forecasts in March-August 2018, CMMEv1.0 has accurately predicted the ENSO phase transition from cold to neutral in the tropical central-eastern Pacific and captures evolutions of the NAST and IOD indices in general. The system has also captured the main features of the summer WPSH and EASM indices in 2018, except that the predicted EASM is slightly weaker than the observed. Furthermore, CMMEv1.0 has also successfully predicted warmer air temperatures in northern China and captured the primary rainbelt over northern China, except that it predicted much more precipitation in the middle and lower reaches of the Yangtze River than observation.展开更多
基金Supported by the National Natural Science Foundation of China (U2242206 and 42175052)National Key Research and Development Program of China (2021YFA071800 and 2023YFC3007700)+3 种基金Innovative Development Special Project of China Meteorological Administration (CXFZ2023J002 and CXFZ2023J050)China Meteorological Administration (CMA) Joint Research Project for Meteorological Capacity Improvement (23NLTSZ003)Special Operating Expenses of Scientific Research Institutions for “Key Technology Development of Numerical Forecasting” of Chinese Academy of Meteorological SciencesCMA Youth Innovation Team(CMA2024QN06)。
文摘Based on a combination of six Chinese climate models and three international operational models,the China multimodel ensemble(CMME)prediction system has been upgraded into its version 2(CMMEv2.0)at the National Climate Centre(NCC)of the China Meteorological Administration(CMA)by including new model members and expanding prediction products.A comprehensive assessment of the performance of the upgraded CMME during its hindcast(1993–2016)and real-time prediction(2021–present)periods is conducted in this study.The results demonstrate that CMMEv2.0 outperforms all the individual models by capturing more realistic equatorial sea surface temperature(SST)variability.It exhibits better prediction skills for precipitation and 2-m temperature anomalies,and the improvements in prediction skill of CMMEv2.0 are significant over East Asia.The superiority of CMMEv2.0 can be attributed to its better projection of El Niño–Southern Oscillation(ENSO;with the temporal correlation coefficient score for Niño3.4 index reaching 0.87 at 6-month lead)and ENSO-related teleconnections.As for the real-time prediction in recent three years,CMMEv2.0 has also yielded relatively stable skills;it successfully predicted the primary rainbelt over northern China in summers of 2021–2023 and the warm conditions in winters of 2022/2023.Beyond that,ensemble sampling experiments indicate that the CMMEv2.0 skills become saturated after the ensemble model number increased to 5–6,indicating that selection of only an optimal subgroup of ensemble models could benefit the prediction performance,especially over the extratropics,yet the underlying reasons await future investigation.
基金Supported by the National Key Research and Development Program of China(2017YFC1502306,2017YFC1502302,and 2018YFC-1506004)China Meteorological Administration Special Project for Developing Key Techniques for Operational Meteorological Forecast(YBGJXM201805)
文摘Multi-model ensemble prediction is an effective approach for improving the prediction skill short-term climate prediction and evaluating related uncertainties. Based on a combination of localized operation outputs of Chinese climate models and imported forecast data of some international operational models, the National Climate Center of the China Meteorological Administration has established the China multi-model ensemble prediction system version 1.0 (CMMEv1.0) for monthly-seasonal prediction of primary climate variability modes and climate elements. We verified the real-time forecasts of CMMEv1.0 for the 2018 flood season (June-August) starting from March 2018 and evaluated the 1991-2016 hindcasts of CMMEv1.0. The results show that CMMEv1.0 has a significantly high prediction skill for global sea surface temperature (SST) anomalies, especially for the El Nino-Southern Oscillation (ENSO) in the tropical central-eastern Pacific. Additionally, its prediction skill for the North Atlantic SST triple (NAST) mode is high, but is relatively low for the Indian Ocean Dipole (IOD) mode. Moreover, CMMEv1.0 has high skills in predicting the western Pacific subtropical high (WPSH) and East Asian summer monsoon (EASM) in the June-July-August (JJA) season. The JJA air temperature in the CMMEv1.0 is predicted with a fairly high skill in most regions of China, while the JJA precipitation exhibits some skills only in northwestern and eastern China. For real-time forecasts in March-August 2018, CMMEv1.0 has accurately predicted the ENSO phase transition from cold to neutral in the tropical central-eastern Pacific and captures evolutions of the NAST and IOD indices in general. The system has also captured the main features of the summer WPSH and EASM indices in 2018, except that the predicted EASM is slightly weaker than the observed. Furthermore, CMMEv1.0 has also successfully predicted warmer air temperatures in northern China and captured the primary rainbelt over northern China, except that it predicted much more precipitation in the middle and lower reaches of the Yangtze River than observation.