Long-chain acyl-Co A synthetase(ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer mem...Long-chain acyl-Co A synthetase(ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-Co As, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or lossof-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolismassociated effects of ACSLs in diseases.展开更多
Long-chain acyl coenzyme A synthetase(ACSL) is a member of the synthetase family encoded by a multigene family;it plays an important role in the absorption and transport of fatty acid.Here we review the roles of ACSL ...Long-chain acyl coenzyme A synthetase(ACSL) is a member of the synthetase family encoded by a multigene family;it plays an important role in the absorption and transport of fatty acid.Here we review the roles of ACSL in the regulating absorption and transport of fatty acid,as well as the connection between ACSL and some metabolic diseases.展开更多
Fatty acids are energy substrates and cell components which participate in regulating signal transduction,transcription factor activity and secretion of bioactive lipid mediators.The acyl-CoA synthetases(ACSs)family c...Fatty acids are energy substrates and cell components which participate in regulating signal transduction,transcription factor activity and secretion of bioactive lipid mediators.The acyl-CoA synthetases(ACSs)family containing 26 family members exhibits tissue-specific distribution,distinct fatty acid substrate preferences and diverse biological functions.Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis,designated as the bidirectional relationship between the gut,microbiome and liver,is closely associated with a range of human diseases including metabolic disorders,inflammatory disease and carcinoma in the gastrointestinal tract and liver.In this review,we depict the role of ACSs in fatty acid metabolism,possible molecular mechanisms through which they exert functions,and their involvement in hepatocellular and colorectal carcinoma,with particular attention paid to long-chain fatty acids and small-chain fatty acids.Additionally,the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed.Moreover,the development of potentially therapeutic small molecules,proteins and compounds targeting ACSs in cancer treatment is summarized.展开更多
AIM:To investigate whether human acyl-CoA synthetase 5(ACSL5) is sensitive to the ACSL inhibitor triacsin C.METHODS:The ACSL isoforms ACSL1 and ACSL5 from rat as well as human ACSL5 were cloned and recombinantly expre...AIM:To investigate whether human acyl-CoA synthetase 5(ACSL5) is sensitive to the ACSL inhibitor triacsin C.METHODS:The ACSL isoforms ACSL1 and ACSL5 from rat as well as human ACSL5 were cloned and recombinantly expressed as 6xHis-tagged enzymes.Ni 2+-affinity purified recombinant enzymes were assayed at pH 7.5 or pH 9.5 in the presence or absence of triacsin C.In addition,ACSL5 transfected CaCo2 cells and intestinal human mucosa were monitored.ACSL5 expression in cellular systems was verified using Western blot and immunofluorescence.The ACSL assay mix included TrisHCl(pH 7.4),ATP,CoA,EDTA,DTT,MgCl 2,[9,103 H] palmitic acid,and triton X-100.The 200 μL reaction was initiated with the addition of solubilized,purified recombinant proteins or cellular lysates.Reactions were terminated after 10,30 or 60 min of incubation with Doles medium.RESULTS:Expression of soluble recombinant ACSL proteins was found after incubation with isopropyl betaD-1-thiogalactopyranoside and after ultracentrifugation these were further purified to near homogeneity with Ni 2+-affinity chromatography.Triacsin C selectively and strongly inhibited recombinant human ACSL5 protein at pH 7.5 and pH 9.5,as well as recombinant rat ACSL1(sensitive control),but not recombinant rat ACSL5(insensitive control).The IC50 for human ACSL5 was about 10 μmol/L.The inhibitory triacsin C effect was similar for different incubation times(10,30 and 60 min) and was not modified by the N-or C-terminal location of the 6xHis-tag.In order to evaluate ACSL5 sensitivity to triacsin C in a cellular environment,stable human ACSL5 CaCo2 transfectants and mechanically dissected normal human intestinal mucosa with high physiological expression of ACSL5 were analyzed.In both models,ACSL5 peak activity was found at pH 7.5 and pH 9.5,corresponding to the properties of recombinant human ACSL5 protein.In the presence of triacsin C(25 μmol/L),total ACSL activity was dramatically diminished in human ACSL5 transfectants as well as in ACSL5-rich human intestinal mucosa.CONCLUSION:The data strongly indicate that human ACSL5 is sensitive to triacsin C and does not compensate for other triacsin C-sensitive ACSL isoforms.展开更多
The aim of this study was to determine the immunoreactivity of neuronal and inducible nitric oxide synthetase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase in different regions of brain ...The aim of this study was to determine the immunoreactivity of neuronal and inducible nitric oxide synthetase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase in different regions of brain in rats of kainic acid mediated epilepsy. Male Sprague-Dawley rats were used in this study. The acute group animals were sacrificed after 2 hours and the chronic group animals were sacrificed after 5 days of a single subcutaneous injection of kainic acid (15 mg/kg body weight). The cerebral cortex, cerebellum and brain stem slices were fixed and immunohistostained for the above enzymes. Images were captured and analyzed. In acute group, argininosuccinate synthetase and inducible nitric oxide synthetase were increased in cerebral cortex and cerebellum, neuronal nitric oxide synthetase increased in cerebral cortex and brain stem, and there was no change in argininosuccinate lyase immunoreactivity compared to control group. In chronic group, glutamine synthetase was decreased and all other enzymes immunoreactivity was increased in all the brain regions tested. This study demonstrated the up-regulation of citrul-line-nitric oxide cycle enzymes and may contribute to enhancing recycling of citrulline to arginine to support the increased production of nitric oxide in epilepsy. The decreased glutamine synthetase may increase glutamate in chronic epilepsy and may lead to neurodegeneration.展开更多
Ion-sensitive field-effect transistor (ISFET)-based biosensor for amino acids was proposed, and the response of the sensor to amino acids was evaluated. As a molecular recognition element, aminoacyl-tRNA synthetase ...Ion-sensitive field-effect transistor (ISFET)-based biosensor for amino acids was proposed, and the response of the sensor to amino acids was evaluated. As a molecular recognition element, aminoacyl-tRNA synthetase which would be expected to have high selectivity for the corresponding amino acids was used, aminoacyl-tRNA synthetase was coated onto an ISFET electrode, and the response of the biosensor to amino acids was evaluated. The amino acid sensor for tyrosine showed a selective response to tyrosine because of the specific binding ability of aminoacyl-tRNA synthetase for tyrosine and from 300μM to 900 μM of tyrosine could be measured (r2 〉 0.969).展开更多
长链脂酰辅酶A合成酶(acyl-CoA synthetase long-chain,ACSL)属于多基因家族编码的酶,位于内质网和线粒体外膜上的ACSL主要催化脂肪酸形成脂酰辅酶A(acyl-CoA),参与脂肪酸代谢、膜修饰等多种生理过程。ACSL家族在不同细胞的脂肪酸代谢...长链脂酰辅酶A合成酶(acyl-CoA synthetase long-chain,ACSL)属于多基因家族编码的酶,位于内质网和线粒体外膜上的ACSL主要催化脂肪酸形成脂酰辅酶A(acyl-CoA),参与脂肪酸代谢、膜修饰等多种生理过程。ACSL家族在不同细胞的脂肪酸代谢中发挥不同作用,其功能异常可导致如脂肪肝、动脉粥样硬化和糖尿病的发生。ACSL家族成员1(ACSL family member 1,ACSL1)作为ACSL家族在肝脏中的主要亚型,主要参与维持胆固醇稳定、脂肪酸活化以及胆汁酸代谢,同时与某些肝脏疾病如肝细胞癌、非酒精性脂肪肝的发生发展密切相关。本文综述了ACSL家族各成员的生理功能、作用特点,并阐释了ACSL1对脂质代谢、调节细胞铁死亡的影响以及在相关疾病如肝纤维化、肝细胞癌、恶病质、非酒精性脂肪肝、甲状腺癌以及乳腺癌发展中的作用机制的研究进展。展开更多
基金Supported by National Natural Science Foundation of China,No.81373465
文摘Long-chain acyl-Co A synthetase(ACSL) family members include five different ACSL isoforms, each encoded by a separate gene and have multiple spliced variants. ACSLs on endoplasmic reticulum and mitochondrial outer membrance catalyze fatty acids with chain lengths from 12 to 20 carbon atoms to form acyl-Co As, which are lipid metabolic intermediates and involved in fatty acid metabolism, membrane modifications and various physiological processes. Gain- or lossof-function studies have shown that the expression of individual ACSL isoforms can alter the distribution and amount of intracellular fatty acids. Changes in the types and amounts of fatty acids, in turn, can alter the expression of intracellular ACSLs. ACSL family members affect not only the proliferation of normal cells, but the proliferation of malignant tumor cells. They also regulate cell apoptosis through different signaling pathways and molecular mechanisms. ACSL members have individual functions in fatty acid metabolism in different types of cells depending on substrate preferences, subcellular location and tissue specificity, thus contributing to liver diseases and metabolic diseases, such as fatty liver disease, obesity, atherosclerosis and diabetes. They are also linked to neurological disorders and other diseases. However, the mechanisms are unclear. This review addresses new findings in the classification and properties of ACSLs and the fatty acid metabolismassociated effects of ACSLs in diseases.
基金Supported by the National Natural Science Foundation of China(81373465)
文摘Long-chain acyl coenzyme A synthetase(ACSL) is a member of the synthetase family encoded by a multigene family;it plays an important role in the absorption and transport of fatty acid.Here we review the roles of ACSL in the regulating absorption and transport of fatty acid,as well as the connection between ACSL and some metabolic diseases.
基金Supported by the Interdisziplinäres Zentrum für Klinische Forschung(IZKF-MSP-06)of University Hospital Jena.
文摘Fatty acids are energy substrates and cell components which participate in regulating signal transduction,transcription factor activity and secretion of bioactive lipid mediators.The acyl-CoA synthetases(ACSs)family containing 26 family members exhibits tissue-specific distribution,distinct fatty acid substrate preferences and diverse biological functions.Increasing evidence indicates that dysregulation of fatty acid metabolism in the liver-gut axis,designated as the bidirectional relationship between the gut,microbiome and liver,is closely associated with a range of human diseases including metabolic disorders,inflammatory disease and carcinoma in the gastrointestinal tract and liver.In this review,we depict the role of ACSs in fatty acid metabolism,possible molecular mechanisms through which they exert functions,and their involvement in hepatocellular and colorectal carcinoma,with particular attention paid to long-chain fatty acids and small-chain fatty acids.Additionally,the liver-gut communication and the liver and gut intersection with the microbiome as well as diseases related to microbiota imbalance in the liver-gut axis are addressed.Moreover,the development of potentially therapeutic small molecules,proteins and compounds targeting ACSs in cancer treatment is summarized.
基金Supported by Deutsche Forschungsgemeinschaft, No. GA785/6-1Deutsche Krebshilfe, No. 109313the Rotationsprogramm of the Medical Faculty RWTH Aachen University (to Kaemmerer E)
文摘AIM:To investigate whether human acyl-CoA synthetase 5(ACSL5) is sensitive to the ACSL inhibitor triacsin C.METHODS:The ACSL isoforms ACSL1 and ACSL5 from rat as well as human ACSL5 were cloned and recombinantly expressed as 6xHis-tagged enzymes.Ni 2+-affinity purified recombinant enzymes were assayed at pH 7.5 or pH 9.5 in the presence or absence of triacsin C.In addition,ACSL5 transfected CaCo2 cells and intestinal human mucosa were monitored.ACSL5 expression in cellular systems was verified using Western blot and immunofluorescence.The ACSL assay mix included TrisHCl(pH 7.4),ATP,CoA,EDTA,DTT,MgCl 2,[9,103 H] palmitic acid,and triton X-100.The 200 μL reaction was initiated with the addition of solubilized,purified recombinant proteins or cellular lysates.Reactions were terminated after 10,30 or 60 min of incubation with Doles medium.RESULTS:Expression of soluble recombinant ACSL proteins was found after incubation with isopropyl betaD-1-thiogalactopyranoside and after ultracentrifugation these were further purified to near homogeneity with Ni 2+-affinity chromatography.Triacsin C selectively and strongly inhibited recombinant human ACSL5 protein at pH 7.5 and pH 9.5,as well as recombinant rat ACSL1(sensitive control),but not recombinant rat ACSL5(insensitive control).The IC50 for human ACSL5 was about 10 μmol/L.The inhibitory triacsin C effect was similar for different incubation times(10,30 and 60 min) and was not modified by the N-or C-terminal location of the 6xHis-tag.In order to evaluate ACSL5 sensitivity to triacsin C in a cellular environment,stable human ACSL5 CaCo2 transfectants and mechanically dissected normal human intestinal mucosa with high physiological expression of ACSL5 were analyzed.In both models,ACSL5 peak activity was found at pH 7.5 and pH 9.5,corresponding to the properties of recombinant human ACSL5 protein.In the presence of triacsin C(25 μmol/L),total ACSL activity was dramatically diminished in human ACSL5 transfectants as well as in ACSL5-rich human intestinal mucosa.CONCLUSION:The data strongly indicate that human ACSL5 is sensitive to triacsin C and does not compensate for other triacsin C-sensitive ACSL isoforms.
文摘The aim of this study was to determine the immunoreactivity of neuronal and inducible nitric oxide synthetase, argininosuccinate synthetase, argininosuccinate lyase, glutamine synthetase in different regions of brain in rats of kainic acid mediated epilepsy. Male Sprague-Dawley rats were used in this study. The acute group animals were sacrificed after 2 hours and the chronic group animals were sacrificed after 5 days of a single subcutaneous injection of kainic acid (15 mg/kg body weight). The cerebral cortex, cerebellum and brain stem slices were fixed and immunohistostained for the above enzymes. Images were captured and analyzed. In acute group, argininosuccinate synthetase and inducible nitric oxide synthetase were increased in cerebral cortex and cerebellum, neuronal nitric oxide synthetase increased in cerebral cortex and brain stem, and there was no change in argininosuccinate lyase immunoreactivity compared to control group. In chronic group, glutamine synthetase was decreased and all other enzymes immunoreactivity was increased in all the brain regions tested. This study demonstrated the up-regulation of citrul-line-nitric oxide cycle enzymes and may contribute to enhancing recycling of citrulline to arginine to support the increased production of nitric oxide in epilepsy. The decreased glutamine synthetase may increase glutamate in chronic epilepsy and may lead to neurodegeneration.
文摘Ion-sensitive field-effect transistor (ISFET)-based biosensor for amino acids was proposed, and the response of the sensor to amino acids was evaluated. As a molecular recognition element, aminoacyl-tRNA synthetase which would be expected to have high selectivity for the corresponding amino acids was used, aminoacyl-tRNA synthetase was coated onto an ISFET electrode, and the response of the biosensor to amino acids was evaluated. The amino acid sensor for tyrosine showed a selective response to tyrosine because of the specific binding ability of aminoacyl-tRNA synthetase for tyrosine and from 300μM to 900 μM of tyrosine could be measured (r2 〉 0.969).
文摘长链脂酰辅酶A合成酶(acyl-CoA synthetase long-chain,ACSL)属于多基因家族编码的酶,位于内质网和线粒体外膜上的ACSL主要催化脂肪酸形成脂酰辅酶A(acyl-CoA),参与脂肪酸代谢、膜修饰等多种生理过程。ACSL家族在不同细胞的脂肪酸代谢中发挥不同作用,其功能异常可导致如脂肪肝、动脉粥样硬化和糖尿病的发生。ACSL家族成员1(ACSL family member 1,ACSL1)作为ACSL家族在肝脏中的主要亚型,主要参与维持胆固醇稳定、脂肪酸活化以及胆汁酸代谢,同时与某些肝脏疾病如肝细胞癌、非酒精性脂肪肝的发生发展密切相关。本文综述了ACSL家族各成员的生理功能、作用特点,并阐释了ACSL1对脂质代谢、调节细胞铁死亡的影响以及在相关疾病如肝纤维化、肝细胞癌、恶病质、非酒精性脂肪肝、甲状腺癌以及乳腺癌发展中的作用机制的研究进展。