Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in...Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.展开更多
基金supported in part by Xi’an Aero-Engine(Group)Ltd.National Key Scientific Instrument and Equipment Development Project(2016YFF0101900)+1 种基金National Natural Science Foundation of China(Grant 51575310)Beijing Municipal Natural Science Foundation(Grant 3162014)。
文摘Low stiffness and positioning problems are difficulties and challenges in the precise machining of near-net-shaped blades.This paper aims to achieve high accuracy in manufacturing by fixture-and deformation-control in the adaptive CNC machining process.Adaptive CNC machining technology is first analyzed,and new fixture-evaluation criteria and methods to evaluate the adaptive CNC machining process fixture design are built.Second,a machining fixture is designed and manufactured after analyzing its positioning scheme,clamping scheme,materials(PEEK-GF30),and structure characteristics.Finally,the designed fixture is analyzed by FEA and experimentally verified by a cutting experiment.The results show that the deformation of the blade is an overall rigid-body displacement,the main deformation of the blade-fixture system occurs on the four clamping heads,and this fixture can effectively protect the blade from local deformation.The proposed clamping-sequence method reliably and effectively controls the local maximum deformation of the blade.The system stiffness is increased by 20 Hz,with each clamping force increased by 200 N.Both high-and low-frequency displacement in roughing milling or finishing milling are acceptable relative to the accuracy demand of blade machining.This fixture and an adaptive CNC machining process can achieve high accuracy in blade manufacturing.