Valuable dropsonde data were obtained from multiple field campaigns targeting tropical cyclones,namely Higos,Nangka,Saudel,and Atsani,over the western North Pacific by the Hong Kong Observatory and Taiwan Central Weat...Valuable dropsonde data were obtained from multiple field campaigns targeting tropical cyclones,namely Higos,Nangka,Saudel,and Atsani,over the western North Pacific by the Hong Kong Observatory and Taiwan Central Weather Bureau in 2020.The conditional nonlinear optimal perturbation(CNOP)method has been utilized in real-time to identify the sensitive regions for targeting observations adhering to the procedure of real-time field campaigns for the first time.The observing system experiments were conducted to evaluate the effect of dropsonde data and CNOP sensitivity on TC forecasts in terms of track and intensity,using the Weather Research and Forecasting model.It is shown that the impact of assimilating all dropsonde data on both track and intensity forecasts is case-dependent.However,assimilation using only the dropsonde data inside the sensitive regions displays unanimously positive effects on both the track and intensity forecast,either of which obtains comparable benefits to or greatly reduces deterioration of the skill when assimilating all dropsonde data.Therefore,these results encourage us to further carry out targeting observations for the forecast of tropical cyclones according to CNOP sensitivity.展开更多
This study investigated the impact of different verification-area designs on the sensitive areas identified using the conditional nonlinear optimal perturbation (CNOP) method for tropical cyclone targeted observatio...This study investigated the impact of different verification-area designs on the sensitive areas identified using the conditional nonlinear optimal perturbation (CNOP) method for tropical cyclone targeted observations.The sensitive areas identified using the first singular vector (FSV) method,which is the linear approximation of CNOP,were also investigated for comparison.By analyzing the validity of the sensitive areas,the proper design of a verification area was developed.Tropical cyclone Rananim,which occurred in August 2004 in the northwest Pacific Ocean,was studied.Two sets of verification areas were designed;one changed position,and the other changed both size and position.The CNOP and its identified sensitive areas were found to be less sensitive to small variations of the verification areas than those of the FSV and its sensitive areas.With larger variations of the verification area,the CNOP and the FSV as well as their identified sensitive areas changed substantially.In terms of reducing forecast errors in the verification area,the CNOP-identified sensitive areas were more beneficial than those identified using FSV.The design of the verification area is important for cyclone prediction.The verification area should be designed with a proper size according to the possible locations of the cyclone obtained from the ensemble forecast results.In addition,the development trend of the cyclone analyzed from its dynamic mechanisms was another reference.When the general position of the verification area was determined,a small variation in size or position had little influence on the results of CNOP.展开更多
In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutio...In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutions, 30 km, 60 km, and 120 kin, were studied for three tropical cyclones, TC Mindulle (2004), TC Meari (2004), and TC Matsa (2005). Results show that CNOP may present different structures with different resolutions, and the major parts of CNOP become increasingly localized with increased horizontal resolution. CNOP produces spiral and baroclinic structures, which partially account for its rapid amplification. The differences in CNOP structures result in different sensitive areas, but there are common areas for the CNOP-identified sensitive areas at various resolutions, and the size of the common areas is different from case to case. Generally, the forecasts benefit more from the reduction of the initial errors in the sensitive areas identified using higher resolutions than those using lower resolutions. However, the largest improvement of the forecast can be obtained at the resolution that is not the highest for some cases. In addition, the sensitive areas identified at lower resolutions are also helpful for improving the forecast with a finer resolution, but the sensitive areas identified at the same resolution as the forecast would be the most beneficial.展开更多
This study examines the time and regime dependencies of sensitive areas identified by the conditional nonlinear optiflml perturbation (CNOP) method for forecasts of two typhoons. Typhoon Meari (2004) was weakly no...This study examines the time and regime dependencies of sensitive areas identified by the conditional nonlinear optiflml perturbation (CNOP) method for forecasts of two typhoons. Typhoon Meari (2004) was weakly nonlinear and is herein referred to as the linear case, while Typhoon Matsa (2005) was strongly nonlinear and is herein referred to as the nonlinear case. In the linear case, the sensitive areas identified for special forecast times when the initial time was fixed resembled those identified for other forecast times. Targeted observations deployed to improve a special time forecast would thus also benefit forecasts at other times. In the nonlinear case, the similarities among the sensitive areas identified for different forecast times were more limited. The deployment of targeted observations in the nonlinear case would therefore need to be adapted to achieve large improvements for different targeted forecasts. For both cases, the closer the forecast time, the higher the similarities of the sensitive areas. When the forecast time was fixed, the sensitive areas in the linear case diverged continuously from the verification area as the forecast period lengthened, while those in the nonlinear case were always located around the initial cyclones. The deployment of targeted observations to improve a special forecast depends strongly on the time of deployment. An examination of the efficiency gained by reducing initial errors within the identified sensitive areas confirmed these results. In general, the greatest improvement in a special time forecast was obtained by identifying the sensitive areas for the corresponding forecast time period.展开更多
This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and...This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.展开更多
This study investigated the influence of dropwindsonde observations on typhoon forecasts. The study also evaluated the feasibility of the conditional nonlinear optimal perturbation (CNOP) method as a basis for sensiti...This study investigated the influence of dropwindsonde observations on typhoon forecasts. The study also evaluated the feasibility of the conditional nonlinear optimal perturbation (CNOP) method as a basis for sensitivity analysis of such forecasts. This sensitivity analysis could furnish guidance in the selection of targeted observations. The study was performed by conducting observation system experiments (OSEs). This research used the fifth-generation Mesoscale Model (MM5), the Weather Research and Forecasting (WRF) model, and dropsonde observations of Typhoon Nida at 1200 UTC 17 May 2004. The dropsondes were collected under the operational Dropsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR) program. In this research, five kinds of experiments were designed and conducted:(1) no observations were assimilated; (2) all observations were assimilated;(3) observations in the sensitive area revealed by the CNOP method were assimilated;(4) the same as in (3), but for the region revealed by the first singular vector (FSV) method;and (5) observations within a randomly selected area were assimilated. The OSEs showed that (1) the DOTSTAR data had a positive impact on the forecast of Nida's track;(2) dropsondes in the sensitive areas identified by the MM5 CNOP and FSV remained effective for improving the track forecast for Nida on the WRF platform;and (3) the greatest improvement in the track forecast resulted from the CNOP-based (third) simulation, which indicated that the CNOP method would be useful in decision making about dropsonde deployments.展开更多
Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonl...Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.展开更多
The sensitive regions of conditional nonlinear optimal perturbations (CNOPs) and the first singular vector (FSV) for a northwest Pacific typhoon case are reported in this paper. A large number of probes have been desi...The sensitive regions of conditional nonlinear optimal perturbations (CNOPs) and the first singular vector (FSV) for a northwest Pacific typhoon case are reported in this paper. A large number of probes have been designed in the above regions and the ensemble transform Kalman filter (ETKF) techniques are utilized to examine which approach can locate more appropriate regions for typhoon adaptive observations. The results show that, in general, the majority of the probes in the sensitive regions of CNOPs can reduce more forecast error variance than the probes in the sensitive regions of FSV. This implies that adaptive observations in the sensitive regions of CNOPs are more effective than in the sensitive regions of FSV. Furthermore, the reduction of the forecast error variance obtained by the best probe identified by CNOPs is twice the reduction of the forecast error variance obtained by FSV. This implies that dropping sondes, which is the best probe identified by CNOPs, can improve the forecast more than the best probe identified by FSV. These results indicate that the sensitive regions identified by CNOPs are more appropriate for adaptive observations than those identified by FSV.展开更多
The conditional nonlinear optimal perturbations(CNOPs) obtained by a fast algorithm are applied to determining the sensitive area for the targeting observation of Typhoon Matsa in 2005 using an operational regional ...The conditional nonlinear optimal perturbations(CNOPs) obtained by a fast algorithm are applied to determining the sensitive area for the targeting observation of Typhoon Matsa in 2005 using an operational regional prediction model-the Global/Regional Assimilation and PrEdiction System(GRAPES).Through a series of sensitivity experiments,several issues on targeting strategy design are discussed,including the effectivity of different guidances to determine the sensitive area(or targeting area) and the impact of sensitive area size on improving the 24-h forecast.In this study,three guidances are used along with the CNOP to find sensitive area for improving the 24-h prediction of sea level pressure and accumulated rainfall in the verification region.The three guidances are based on winds only;on winds,geopotential height,and specific humidity;and on winds,geopotential height,specific humidity,and observation error,respectively.The distribution and effectivity of the sensitive areas are compared with each other,and the results show that the sensitive areas identified by the three guidances are different in terms of convergence and effectivity.All the sensitive areas determined by these guidances can lead to improvement of the 24-h forecast of interest. The second and third guidances are more effective and can identify more similar sensitive areas than the first one.Further,the size of sensitive areas is changed the same way for three guidances and the 24-h accumulated rainfall prediction is examined.The results suggest that a larger sensitive area can result in better prediction skill,provided that the guidance is sensitive to the size of sensitive areas.展开更多
Conditional Nonlinear Optimal Perturbation (CNOP) is a new method proposed by Mu et al. in 2003, which generalizes the linear singular vector (LSV) to include nonlinearity. It has become a powerful tool for studyi...Conditional Nonlinear Optimal Perturbation (CNOP) is a new method proposed by Mu et al. in 2003, which generalizes the linear singular vector (LSV) to include nonlinearity. It has become a powerful tool for studying predictability and sensitivity among other issues in nonlinear systems. This is because the CNOP is able to represent, while the LSV is unable to deal with, the fastest developing perturbation in a nonlinear system. The wide application of this new method, however, has been limited due to its large computational cost related to the use of an adjoint technique. In order to greatly reduce the computational cost, we hereby propose a fast algorithm for solving the CNOP based on the empirical orthogonal function (EOF). The algorithm is tested in target observation experiments of Typhoon Matsa using the Global/Regional Assimilation and PrEdiction System (GRAPES), an operational regional forecast model of China. The effectivity and feasibility of the algorithm to determine the sensitivity (target) area is evaluated through two observing system simulation experiments (OSSEs). The results, as expected, show that the energy of the CNOP solved by the new algorithm develops quickly and nonlinearly. The sensitivity area is effectively identified with the CNOP from the new algorithm, using 24 h as the prediction time window. The 24-h accumulated rainfall prediction errors (ARPEs) in the verification region are reduced significantly compared with the "true state," when the initial conditions (ICs) in the sensitivity area are replaced with the "observations." The decrease of the ARPEs can be achieved for even longer prediction times (e.g., 72 h). Further analyses reveal that the decrease of the 24-h ARPEs in the verification region is attributable to improved simulations of the typhoon's initial warm-core, upper level relative vorticity, water vapor conditions, etc., as a result of the updated ICs in the sensitivity area.展开更多
The influence of Arctic sea ice concentration (SIC) on the subseasonal prediction of the North Atlantic Oscillation (NAO) event is investigated by utilizing the Community Atmospheric Model version 4. The optimal Arcti...The influence of Arctic sea ice concentration (SIC) on the subseasonal prediction of the North Atlantic Oscillation (NAO) event is investigated by utilizing the Community Atmospheric Model version 4. The optimal Arctic SIC perturbations which exert the greatest influence on the onset of an NAO event from a lead of three pentads (15 days) are obtained with a conditional nonlinear optimal perturbation approach. Numerical results show that there are two types of optimal Arctic SIC perturbations for each NAO event, with one weakening event (marked as type-1) and another strengthening event (marked as type-2). For positive NAO events, type-1 optimal SIC perturbations mainly show positive SIC anomalies in the Greenland, Barents, and Okhotsk Seas, while type-2 perturbations mainly feature negative SIC anomalies in these regions. For negative NAO events, the optimal SIC perturbations have almost opposite patterns to those in positive events, although there are some differences among these SIC perturbations due to different atmospheric initial conditions. Further diagnosis reveals that the optimal Arctic SIC perturbations first modify the surface turbulent heat flux and the temperature in the lower troposphere via diabatic processes. Afterward, the temperature in the low troposphere is mainly affected by dynamic advection. Finally, potential vorticity advection plays a crucial role in the 500-hPa geopotential height prediction in the northern North Atlantic sector during pentad 4, which influences NAO event prediction. These results highlight the importance of Arctic SIC on NAO event prediction and the spatial characteristics of the SIC perturbations may provide scientific support for target observations of SIC in improving NAO subseasonal predictions.展开更多
基金jointly sponsored by the National Nature Scientific Foundation of China(Grant.Nos.41930971 and 41775061)the National Key Research and Development Program of China(Grant No.2018YFC1506402)。
文摘Valuable dropsonde data were obtained from multiple field campaigns targeting tropical cyclones,namely Higos,Nangka,Saudel,and Atsani,over the western North Pacific by the Hong Kong Observatory and Taiwan Central Weather Bureau in 2020.The conditional nonlinear optimal perturbation(CNOP)method has been utilized in real-time to identify the sensitive regions for targeting observations adhering to the procedure of real-time field campaigns for the first time.The observing system experiments were conducted to evaluate the effect of dropsonde data and CNOP sensitivity on TC forecasts in terms of track and intensity,using the Weather Research and Forecasting model.It is shown that the impact of assimilating all dropsonde data on both track and intensity forecasts is case-dependent.However,assimilation using only the dropsonde data inside the sensitive regions displays unanimously positive effects on both the track and intensity forecast,either of which obtains comparable benefits to or greatly reduces deterioration of the skill when assimilating all dropsonde data.Therefore,these results encourage us to further carry out targeting observations for the forecast of tropical cyclones according to CNOP sensitivity.
基金supported by the National Natural Science Foundation of China (Grant No. 40830955)the China Meteorological Administration (Grant No. GYHY200906009)the National Basic Research Program of China (Grant Nos.2006CB403606,2007CB411800,and 2009CB421505)
文摘This study investigated the impact of different verification-area designs on the sensitive areas identified using the conditional nonlinear optimal perturbation (CNOP) method for tropical cyclone targeted observations.The sensitive areas identified using the first singular vector (FSV) method,which is the linear approximation of CNOP,were also investigated for comparison.By analyzing the validity of the sensitive areas,the proper design of a verification area was developed.Tropical cyclone Rananim,which occurred in August 2004 in the northwest Pacific Ocean,was studied.Two sets of verification areas were designed;one changed position,and the other changed both size and position.The CNOP and its identified sensitive areas were found to be less sensitive to small variations of the verification areas than those of the FSV and its sensitive areas.With larger variations of the verification area,the CNOP and the FSV as well as their identified sensitive areas changed substantially.In terms of reducing forecast errors in the verification area,the CNOP-identified sensitive areas were more beneficial than those identified using FSV.The design of the verification area is important for cyclone prediction.The verification area should be designed with a proper size according to the possible locations of the cyclone obtained from the ensemble forecast results.In addition,the development trend of the cyclone analyzed from its dynamic mechanisms was another reference.When the general position of the verification area was determined,a small variation in size or position had little influence on the results of CNOP.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40830955,41105038)the China Meteorological Administration (Grant No.GYHY200906009)the National Basic Research Program of China (Grant No. 2009CB421505)
文摘In this study, the ilnpacts of horizontal resolution on the conditional nonlinear optimal perturbation (CNOP) and on its identified sensitive areas were investigated for tropical cyclone predictions. Three resolutions, 30 km, 60 km, and 120 kin, were studied for three tropical cyclones, TC Mindulle (2004), TC Meari (2004), and TC Matsa (2005). Results show that CNOP may present different structures with different resolutions, and the major parts of CNOP become increasingly localized with increased horizontal resolution. CNOP produces spiral and baroclinic structures, which partially account for its rapid amplification. The differences in CNOP structures result in different sensitive areas, but there are common areas for the CNOP-identified sensitive areas at various resolutions, and the size of the common areas is different from case to case. Generally, the forecasts benefit more from the reduction of the initial errors in the sensitive areas identified using higher resolutions than those using lower resolutions. However, the largest improvement of the forecast can be obtained at the resolution that is not the highest for some cases. In addition, the sensitive areas identified at lower resolutions are also helpful for improving the forecast with a finer resolution, but the sensitive areas identified at the same resolution as the forecast would be the most beneficial.
基金supported by the National Natural Science Foundation of China(Grant Nos.41105038and40830955)the NationalKey Technology R&D Program(Grant No.2012BAC22B03)
文摘This study examines the time and regime dependencies of sensitive areas identified by the conditional nonlinear optiflml perturbation (CNOP) method for forecasts of two typhoons. Typhoon Meari (2004) was weakly nonlinear and is herein referred to as the linear case, while Typhoon Matsa (2005) was strongly nonlinear and is herein referred to as the nonlinear case. In the linear case, the sensitive areas identified for special forecast times when the initial time was fixed resembled those identified for other forecast times. Targeted observations deployed to improve a special time forecast would thus also benefit forecasts at other times. In the nonlinear case, the similarities among the sensitive areas identified for different forecast times were more limited. The deployment of targeted observations in the nonlinear case would therefore need to be adapted to achieve large improvements for different targeted forecasts. For both cases, the closer the forecast time, the higher the similarities of the sensitive areas. When the forecast time was fixed, the sensitive areas in the linear case diverged continuously from the verification area as the forecast period lengthened, while those in the nonlinear case were always located around the initial cyclones. The deployment of targeted observations to improve a special forecast depends strongly on the time of deployment. An examination of the efficiency gained by reducing initial errors within the identified sensitive areas confirmed these results. In general, the greatest improvement in a special time forecast was obtained by identifying the sensitive areas for the corresponding forecast time period.
基金partially supported by the National Key R&D Program of China (Grant No. 2016YFA0600203)the National Natural Science Foundation of China (Grant No. 41575100)
文摘This paper proposes a hybrid method, called CNOP–4 DVar, for the identification of sensitive areas in targeted observations, which takes the advantages of both the conditional nonlinear optimal perturbation(CNOP) and four-dimensional variational assimilation(4 DVar) methods. The proposed CNOP–4 DVar method is capable of capturing the most sensitive initial perturbation(IP), which causes the greatest perturbation growth at the time of verification;it can also identify sensitive areas by evaluating their assimilation effects for eliminating the most sensitive IP. To alleviate the dependence of the CNOP–4 DVar method on the adjoint model, which is inherited from the adjoint-based approach, we utilized two adjointfree methods, NLS-CNOP and NLS-4 DVar, to solve the CNOP and 4 DVar sub-problems, respectively. A comprehensive performance evaluation for the proposed CNOP–4 DVar method and its comparison with the CNOP and CNOP–ensemble transform Kalman filter(ETKF) methods based on 10 000 observing system simulation experiments on the shallow-water equation model are also provided. The experimental results show that the proposed CNOP–4 DVar method performs better than the CNOP–ETKF method and substantially better than the CNOP method.
基金jointly sponsored by the National Natural Science Foundation of China(Grant No.40830955)the China Meteorological Administration(Grant No.GYHY200906009)
文摘This study investigated the influence of dropwindsonde observations on typhoon forecasts. The study also evaluated the feasibility of the conditional nonlinear optimal perturbation (CNOP) method as a basis for sensitivity analysis of such forecasts. This sensitivity analysis could furnish guidance in the selection of targeted observations. The study was performed by conducting observation system experiments (OSEs). This research used the fifth-generation Mesoscale Model (MM5), the Weather Research and Forecasting (WRF) model, and dropsonde observations of Typhoon Nida at 1200 UTC 17 May 2004. The dropsondes were collected under the operational Dropsonde Observations for Typhoon Surveillance near the Taiwan Region (DOTSTAR) program. In this research, five kinds of experiments were designed and conducted:(1) no observations were assimilated; (2) all observations were assimilated;(3) observations in the sensitive area revealed by the CNOP method were assimilated;(4) the same as in (3), but for the region revealed by the first singular vector (FSV) method;and (5) observations within a randomly selected area were assimilated. The OSEs showed that (1) the DOTSTAR data had a positive impact on the forecast of Nida's track;(2) dropsondes in the sensitive areas identified by the MM5 CNOP and FSV remained effective for improving the track forecast for Nida on the WRF platform;and (3) the greatest improvement in the track forecast resulted from the CNOP-based (third) simulation, which indicated that the CNOP method would be useful in decision making about dropsonde deployments.
基金Supported by the National Natural Science Foundation of China(No.41405097)the Fundamental Research Funds for the Central Universities of China in 2017
文摘Reducing the error of sensitive parameters by studying the parameters sensitivity can reduce the uncertainty of the model,while simulating double-gyre variation in Regional Ocean Modeling System(ROMS).Conditional Nonlinear Optimal Perturbation related to Parameter(CNOP-P)is an effective method of studying the parameters sensitivity,which represents a type of parameter error with maximum nonlinear development at the prediction time.Intelligent algorithms have been widely applied to solving Conditional Nonlinear Optimal Perturbation(CNOP).In the paper,we proposed an improved simulated annealing(SA)algorithm to solve CNOP-P to get the optimal parameters error,studied the sensitivity of the single parameter and the combination of multiple parameters and verified the effect of reducing the error of sensitive parameters on reducing the uncertainty of model simulation.Specifically,we firstly found the non-period oscillation of kinetic energy time series of double gyre variation,then extracted two transition periods,which are respectively from high energy to low energy and from low energy to high energy.For every transition period,three parameters,respectively wind amplitude(WD),viscosity coefficient(VC)and linear bottom drag coefficient(RDRG),were studied by CNOP-P solved with SA algorithm.Finally,for sensitive parameters,their effect on model simulation is verified.Experiments results showed that the sensitivity order is WD>VC>>RDRG,the effect of the combination of multiple sensitive parameters is greater than that of single parameter superposition and the reduction of error of sensitive parameters can effectively reduce model prediction error which confirmed the importance of sensitive parameters analysis.
基金jointly sponsored by the National Natural Science Foundation of China (Grant Nos. 40830955 and 40821092)the China Meteorological Administration (Grant No. GYHY200906009)
文摘The sensitive regions of conditional nonlinear optimal perturbations (CNOPs) and the first singular vector (FSV) for a northwest Pacific typhoon case are reported in this paper. A large number of probes have been designed in the above regions and the ensemble transform Kalman filter (ETKF) techniques are utilized to examine which approach can locate more appropriate regions for typhoon adaptive observations. The results show that, in general, the majority of the probes in the sensitive regions of CNOPs can reduce more forecast error variance than the probes in the sensitive regions of FSV. This implies that adaptive observations in the sensitive regions of CNOPs are more effective than in the sensitive regions of FSV. Furthermore, the reduction of the forecast error variance obtained by the best probe identified by CNOPs is twice the reduction of the forecast error variance obtained by FSV. This implies that dropping sondes, which is the best probe identified by CNOPs, can improve the forecast more than the best probe identified by FSV. These results indicate that the sensitive regions identified by CNOPs are more appropriate for adaptive observations than those identified by FSV.
基金Supported by the State Key 11th Five-Year Project on Sci.& Tech.under Grant No.2006BAC02B03the China Meteorological Administration R & D Special Fund for Public Welfare(meteorology) under Grant No.GYHY(QX)2007-6-12the National Natural Science Foundation of China under Grant No.40605018
文摘The conditional nonlinear optimal perturbations(CNOPs) obtained by a fast algorithm are applied to determining the sensitive area for the targeting observation of Typhoon Matsa in 2005 using an operational regional prediction model-the Global/Regional Assimilation and PrEdiction System(GRAPES).Through a series of sensitivity experiments,several issues on targeting strategy design are discussed,including the effectivity of different guidances to determine the sensitive area(or targeting area) and the impact of sensitive area size on improving the 24-h forecast.In this study,three guidances are used along with the CNOP to find sensitive area for improving the 24-h prediction of sea level pressure and accumulated rainfall in the verification region.The three guidances are based on winds only;on winds,geopotential height,and specific humidity;and on winds,geopotential height,specific humidity,and observation error,respectively.The distribution and effectivity of the sensitive areas are compared with each other,and the results show that the sensitive areas identified by the three guidances are different in terms of convergence and effectivity.All the sensitive areas determined by these guidances can lead to improvement of the 24-h forecast of interest. The second and third guidances are more effective and can identify more similar sensitive areas than the first one.Further,the size of sensitive areas is changed the same way for three guidances and the 24-h accumulated rainfall prediction is examined.The results suggest that a larger sensitive area can result in better prediction skill,provided that the guidance is sensitive to the size of sensitive areas.
基金Supported by the "973" Project of the Ministry of Science and Technology of China under Grant No. 2004CB418304the China Meteorological Administration R&D Special Fund for Public Welfare (meteorology) under Grant No. GYHY(QX)2007-6-15
文摘Conditional Nonlinear Optimal Perturbation (CNOP) is a new method proposed by Mu et al. in 2003, which generalizes the linear singular vector (LSV) to include nonlinearity. It has become a powerful tool for studying predictability and sensitivity among other issues in nonlinear systems. This is because the CNOP is able to represent, while the LSV is unable to deal with, the fastest developing perturbation in a nonlinear system. The wide application of this new method, however, has been limited due to its large computational cost related to the use of an adjoint technique. In order to greatly reduce the computational cost, we hereby propose a fast algorithm for solving the CNOP based on the empirical orthogonal function (EOF). The algorithm is tested in target observation experiments of Typhoon Matsa using the Global/Regional Assimilation and PrEdiction System (GRAPES), an operational regional forecast model of China. The effectivity and feasibility of the algorithm to determine the sensitivity (target) area is evaluated through two observing system simulation experiments (OSSEs). The results, as expected, show that the energy of the CNOP solved by the new algorithm develops quickly and nonlinearly. The sensitivity area is effectively identified with the CNOP from the new algorithm, using 24 h as the prediction time window. The 24-h accumulated rainfall prediction errors (ARPEs) in the verification region are reduced significantly compared with the "true state," when the initial conditions (ICs) in the sensitivity area are replaced with the "observations." The decrease of the ARPEs can be achieved for even longer prediction times (e.g., 72 h). Further analyses reveal that the decrease of the 24-h ARPEs in the verification region is attributable to improved simulations of the typhoon's initial warm-core, upper level relative vorticity, water vapor conditions, etc., as a result of the updated ICs in the sensitivity area.
基金the National Natural Science Foundation of China(Grant Nos.42288101,41790475,42005046,and 41775001).
文摘The influence of Arctic sea ice concentration (SIC) on the subseasonal prediction of the North Atlantic Oscillation (NAO) event is investigated by utilizing the Community Atmospheric Model version 4. The optimal Arctic SIC perturbations which exert the greatest influence on the onset of an NAO event from a lead of three pentads (15 days) are obtained with a conditional nonlinear optimal perturbation approach. Numerical results show that there are two types of optimal Arctic SIC perturbations for each NAO event, with one weakening event (marked as type-1) and another strengthening event (marked as type-2). For positive NAO events, type-1 optimal SIC perturbations mainly show positive SIC anomalies in the Greenland, Barents, and Okhotsk Seas, while type-2 perturbations mainly feature negative SIC anomalies in these regions. For negative NAO events, the optimal SIC perturbations have almost opposite patterns to those in positive events, although there are some differences among these SIC perturbations due to different atmospheric initial conditions. Further diagnosis reveals that the optimal Arctic SIC perturbations first modify the surface turbulent heat flux and the temperature in the lower troposphere via diabatic processes. Afterward, the temperature in the low troposphere is mainly affected by dynamic advection. Finally, potential vorticity advection plays a crucial role in the 500-hPa geopotential height prediction in the northern North Atlantic sector during pentad 4, which influences NAO event prediction. These results highlight the importance of Arctic SIC on NAO event prediction and the spatial characteristics of the SIC perturbations may provide scientific support for target observations of SIC in improving NAO subseasonal predictions.