期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
“Standby” EMT and “immune cell trapping” structure as novel mechanisms for limiting neuronal damage after CNS injury
1
作者 Jong-Ho Cha Kyu-Won Kim 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2032-2035,共4页
The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has ... The central nervous system (CNS) contains the two most important organs, the brain and spinal cord, for the orchestration of the mental and physical activities of life. Because of its importance, the human body has evolved barrier systems to protect CNS tissue from the external environment. This barrier is a membrane composed of tightly apposed cells and is selectively permeable to specific molecules by way of membrane transporters. 展开更多
关键词 EMT and immune cell trapping STANDBY cns structure as novel mechanisms for limiting neuronal damage after cns injury cell
下载PDF
Immunomodulatory approaches to CNS injury:extracellular matrix and exosomes from extracellular matrix conditioned macrophages
2
作者 Yolandi van der Merwe Michael B.Steketee 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期554-556,共3页
After central nervous system(CNS)injury,a pro-inflammatory,innate immune response contributes to permanently lost neuronal function by promoting changes in the micro-environment and extracellular matrix(ECM)that l... After central nervous system(CNS)injury,a pro-inflammatory,innate immune response contributes to permanently lost neuronal function by promoting changes in the micro-environment and extracellular matrix(ECM)that lead to CNS neuronal degeneration and death and permanent scarring. 展开更多
关键词 cell cns ECM Immunomodulatory approaches to cns injury
下载PDF
Mesenchymal stem cell-derived exosomes regulate microglia phenotypes:a promising treatment for acute central nervous system injury 被引量:4
3
作者 Yu-Yan Liu Yun Li +8 位作者 Lu Wang Yan Zhao Rui Yuan Meng-Meng Yang Ying Chen Hao Zhang Fei-Hu Zhou Zhi-Rong Qian Hong-Jun Kang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1657-1665,共9页
There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progre... There is growing evidence that long-term central nervous system(CNS)inflammation exacerbates secondary deterioration of brain structures and functions and is one of the major determinants of disease outcome and progression.In acute CNS injury,brain microglia are among the first cells to respond and play a critical role in neural repair and regeneration.However,microglial activation can also impede CNS repair and amplify tissue damage,and phenotypic transformation may be responsible for this dual role.Mesenchymal stem cell(MSC)-derived exosomes(Exos)are promising therapeutic agents for the treatment of acute CNS injuries due to their immunomodulatory and regenerative properties.MSC-Exos are nanoscale membrane vesicles that are actively released by cells and are used clinically as circulating biomarkers for disease diagnosis and prognosis.MSC-Exos can be neuroprotective in several acute CNS models,including for stroke and traumatic brain injury,showing great clinical potential.This review summarized the classification of acute CNS injury disorders and discussed the prominent role of microglial activation in acute CNS inflammation and the specific role of MSC-Exos in regulating pro-inflammatory microglia in neuroinflammatory repair following acute CNS injury.Finally,this review explored the potential mechanisms and factors associated with MSCExos in modulating the phenotypic balance of microglia,focusing on the interplay between CNS inflammation,the brain,and injury aspects,with an emphasis on potential strategies and therapeutic interventions for improving functional recovery from early CNS inflammation caused by acute CNS injury. 展开更多
关键词 acute cns injury central nervous system inflammation exosome immune regulation mesenchymal stem cell mesenchymal stem cell-derived exosomes(MSC-Exos) microglia activation microglia phenotypic transformation molecular mechanism neuroinflammation
下载PDF
Brain delivering RNA-based therapeutic strategies by targeting mTOR pathway for axon regeneration after central nervous system injury 被引量:3
4
作者 Ming-Xi Li Jing-Wen Weng +2 位作者 Eric S.Ho Shing Fung Chow Chi Kwan Tsang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第10期2157-2165,共9页
Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising... Injuries to the central nervous system(CNS)such as stroke,brain,and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration.The brain has a surprising intrinsic capability of recovering itself after injury.However,the hostile extrinsic microenvironment significantly hinders axon regeneration.Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration.Particularly,substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin(mTOR)signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries.In this review,we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury.Importantly,we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog(PTEN).Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway,we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose,and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination.To specifically tackle the blood-brain barrier issue,we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology.We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury. 展开更多
关键词 axon sprouting axon regeneration brain targeted drug delivery cns injury ischemic stroke mTOR nanoparticle neural circuit reconstruction PTEN RNA-based therapeutics
下载PDF
Inhibition and enhancement of neural regeneration by chondroitin sulfate proteoglycans 被引量:4
5
作者 Heikki Rauvala Mikhail Paveliev +1 位作者 Juha Kuja-Panula Natalia Kulesskaya 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第5期687-691,共5页
The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans(CSPGs) inhibit plasticity and regeneration in the adult central nervous system(CNS). We argue that the role of the C... The current dogma in neural regeneration research implies that chondroitin sulfate proteoglycans(CSPGs) inhibit plasticity and regeneration in the adult central nervous system(CNS). We argue that the role of the CSPGs can be reversed from inhibition to activation by developmentally expressed CSPG-binding factors. Heparin-binding growth-associated molecule(HB-GAM; also designated as pleiotrophin) has been studied as a candidate molecule that might modulate the role of CSPG matrices in plasticity and regeneration. Studies in vitro show that in the presence of soluble HB-GAM chondroitin sulfate(CS) chains of CSPGs display an enhancing effect on neurite outgrowth. Based on the in vitro studies, we suggest a model according to which the HB-GAM/CS complex binds to the neuron surface receptor glypican-2, which induces neurite growth. Furthermore, HB-GAM masks the CS binding sites of the neurite outgrowth inhibiting receptor protein tyrosine phosphatase sigma(PTPσ), which may contribute to the HB-GAM-induced regenerative effect. In vivo studies using two-photon imaging after local HB-GAM injection into prick-injury of the cerebral cortex reveal regeneration of dendrites that has not been previously demonstrated after injuries of the mammalian nervous system. In the spinal cord, two-photon imaging displays HB-GAM-induced axonal regeneration. Studies on the HB-GAM/CS mechanism in vitro and in vivo are expected to pave the way for drug development for injuries of brain and spinal cord. 展开更多
关键词 cns injury axon regeneration dendrite regeneration PROTEOGLYCANS AGGRECAN GLYPICAN HB-GAM PLEIOTROPHIN PTEN
下载PDF
Stem cell therapy for central nerve system injuries: glial cells hold the key 被引量:3
6
作者 Li Xiao Chikako Saiki Ryoji Ide 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第13期1253-1260,共8页
Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regener... Mammalian adult central nerve system (CNS) injuries are devastating because of the intrinsic difficulties for effective neuronal regeneration. The greatest problem to be overcome for CNS recovery is the poor regeneration of neurons and myelin-forming cells, oligodendrocytes. Endogenous neural progenitors and transplanted exogenous neuronal stem cells can be the source for neuronal regeneration. However, because of the harsh local microenvironment, they usually have very low efficacy for functional neural regeneration which cannot compensate for the loss of neurons and oligodendrocytes. Glial cells (including astrocytes, microglia, oligodendrocytes and NG2 glia) are the majority of cells in CNS that provide support and protection for neurons. Inside the local microenvironment, glial cells largely influence local and transplanted neural stem cells survival and fates. This review critically analyzes current finding of the roles of glial cells in CNS regeneration, and highlights strategies for regulating glial cells' behavior to create a permissive microenvironment for neuronal stem cells. 展开更多
关键词 Neuron regeneration stem cell therapy glial cells MICROENVIRONMENT oligodendrocyteregeneration cns injury
下载PDF
Glial kon/NG2 gene network for central nervous system repair
7
作者 Maria Losada-Perez Neale Harrison Alicia Hidalgo 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第1期31-34,共4页
The glial regenerative response to central nervous system(CNS) injury,although limited,can be harnessed to promote regeneration and repair.Injury provokes the proliferation of ensheathing glial cells,which can diffe... The glial regenerative response to central nervous system(CNS) injury,although limited,can be harnessed to promote regeneration and repair.Injury provokes the proliferation of ensheathing glial cells,which can differentiate to remyelinate axons,and partially restore function.This response is evolutionarily conserved,strongly implying an underlying genetic mechanism.In mammals,it is elicited by NG2 glia,but most often newly generated cells fail to differentiate.Thus an important goal had been to find out how to promote glial differentiation following the proliferative response.A gene network involving Notch and prospero(pros) controls the balance between glial proliferation and differentiation in flies and mice,and promotes CNS repair at least in fruit-flies.A key missing link had been how to relate the function of NG2 to this gene network.Recent findings by Losada-Perez et al.,published in JCB,demonstrated that the Drosophila NG2 homologue kon-tiki(kon) is functionally linked to Notch and pros in glia.By engaging in two feedback loops with Notch and Pros,in response to injury,Kon can regulate both glial cell number and glial shape homeostasis,essential for repair.Drosophila offers powerful genetics to unravel the control of stem and progenitor cells for regeneration and repair. 展开更多
关键词 NG2 kon-tiki glia Drosophila injury regeneration repair cns
下载PDF
Unmasking the responses of the stem cells and progenitors in the subventricular zone after neonatal and pediatric brain injuries
8
作者 Mariano Guardia Clausi Ekta Kumari Steven W.Levison 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期45-48,共4页
There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone(SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuri... There is great interest in the regenerative potential of the neural stem cells and progenitors that populate the subventricular zone(SVZ). However, a comprehensive understanding of SVZ cell responses to brain injuries has been hindered by the lack of sensitive approaches to study the cellular composition of this niche. Here we review progress being made in deciphering the cells of the SVZ gleaned from the use of a recently designed flow cytometry panel that allows SVZ cells to be parsed into multiple subsets of progenitors as well as putative stem cells. We review how this approach has begun to unmask both the heterogeneity of SVZ cells as well as the dynamic shifts in cell populations with neonatal and pediatric brain injuries. We also discuss how flow cytometric analyses also have begun to reveal how specific cytokines, such as Leukemia inhibitory factor are coordinating SVZ responses to injury. 展开更多
关键词 cns regeneration cytokines glial progenitors gliogenesis inflammation cerebral palsy traumatic brain injury stroke
下载PDF
Scar-modulating treatments for central nervous system injury 被引量:3
9
作者 Dingding Shen Xiaodong Wang Xiaosong Gu 《Neuroscience Bulletin》 SCIE CAS CSCD 2014年第6期967-984,共18页
Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the prod... Traumatic injury to the adult mammalian central nervous system(CNS) leads to complex cellular responses. Among them, the scar tissue formed is generally recognized as a major obstacle to CNS repair, both by the production of inhibitory molecules and by the physical impedance of axon regrowth. Therefore, scar-modulating treatments have become a leading therapeutic intervention for CNS injury. To date, a variety of biological and pharmaceutical treatments, targeting scar modulation, have been tested in animal models of CNS injury, and a few are likely to enter clinical trials. In this review, we summarize current knowledge of the scar-modulating treatments according to their specific aims:(1) inhibition of glial and fibrotic scar formation, and(2) blockade of the production of scar-associated inhibitory molecules. The removal of existing scar tissue is also discussed as a treatment of choice. It is believed that only a combinatorial strategy is likely to help eliminate the detrimental effects of scar tissue on CNS repair. 展开更多
关键词 cns injury glial scar fibrotic scar inhibitory molecules scar modulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部