Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared...Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection.展开更多
Based on spin-polarized density functional theory (DFT) calculations, the interaction between nickel cluster decorated single-wall carbon nanotube (CNT) and CO molecule has been investigated. DFT calculations are perf...Based on spin-polarized density functional theory (DFT) calculations, the interaction between nickel cluster decorated single-wall carbon nanotube (CNT) and CO molecule has been investigated. DFT calculations are performed with generalized gradient approximation (GGA) using Perdew-Burke-Ernzerhof (PBE) functional. Interaction of CNT and cluster induces spin polarization in the CNT. Nickel decorated CNT has a large magnetic moment of 4.00 μB which decreases to 0.10 μB when CO molecule is absorbed to it. Such a drastic reduction in magnetization may be detected by SQUID magnetometer. Hence by measuring magnetization change, CNT-cluster system may be used as gas detectors. The charge transfer between the systems has been discussed through Mulliken charge analysis for different orientations of the adsorbed CO molecule. We observed that CNT-cluster system acts as electron donor and CO molecule acts as electron acceptor in this study.展开更多
It is reported for the first time that the Pt/TiO2 electrocatalyst was successfully used for the electrocatalytic oxidation of CO in the electrochemical gas sensor with a controlled potential mode. The stability of e...It is reported for the first time that the Pt/TiO2 electrocatalyst was successfully used for the electrocatalytic oxidation of CO in the electrochemical gas sensor with a controlled potential mode. The stability of electrocatalytic activity of the Pt-TiO2 electrocatalyst for the CO oxidation is better than that of Pt.展开更多
yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 30...yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.展开更多
Critical situations that cannot be solved by conventional approaches (traditional air quality monitoring networks), have the possibility of being managed quickly by a wide network of portable systems with sensors. The...Critical situations that cannot be solved by conventional approaches (traditional air quality monitoring networks), have the possibility of being managed quickly by a wide network of portable systems with sensors. The purpose of this research was to calibrate and validate low-cost sensors. Pilot indoor and outdoor areas, in the central area of Brasilia (Brazil’s capital city) were chosen for corporative performance evaluation of the sensors. The CO at 99.999% volumetric injection method has been used in a gas test box, among two MiCS-5521 (CO/VOC) sensors, one being new and the other one with a short useful life. The number of injections adopted to each volume (from 1 ml to 6 ml) was 10, rising each sensor’s confidence interval mean. A increase of the injected volume (ml) of CO resulted in significant decrease in a resistance (Ohms), as shown by a good inverse relationship on the interaction of these two variables (r = 0.88), with good measurement accuracy, when compared to the manufacturer’s reference datasheet. Finally, a geospatial management system was built for the pollution data measured by the low-cost sensors.展开更多
Activity recognition of indoor occupants using indirect sensing with less privacy violation is one of the hot research topics. This paper proposes a CO<sub>2</sub> sensor-based indoor occupant activity mon...Activity recognition of indoor occupants using indirect sensing with less privacy violation is one of the hot research topics. This paper proposes a CO<sub>2</sub> sensor-based indoor occupant activity monitoring system. Using the IoT sensor node that contains CO<sub>2</sub> sensors, the measured CO<sub>2</sub> concentrations in three locations (laboratory, office, and bedroom) were stored in a cloud server for up to 35 days starting July 1, 2023. The CO<sub>2</sub> measurements stored at 30-second intervals were statistically processed to produce a heat-mapped display of the hourly average or maximum CO<sub>2</sub> concentration. From the heatmap visualizations of CO<sub>2</sub> concentration, the proposed system estimated meeting, heating water using a portable stove, and sleep for the occupants’ activity recognition.展开更多
基金funded by Natural Science Foundation of Heilongjiang Province(TD2020C001)National Forestry Science and Technology Promotion Project(2019[10])。
文摘Cleaning up residual fires is an important part of forest fire management to avoid the loss of forest resources caused by the recurrence of a residual fire.Existing residual fire detection equipment is mainly infrared temperature detection and smoke identification.Due to the isolation of ground,temperature and smoke characteristics of medium and large smoldering charcoal in some forest soils are not obvious,making it difficult to identify by detection equipment.CO gas is an important detection index for indoor smoldering fire detection,and an important identification feature of hidden smoldering ground fires.However,there is no research on locating smoldering fires through CO detection.We studied the diffusion law of CO gas directly above covered smoldering charcoal as a criterion to design a detection device equipped with multiple CO sensors.According to the motion decomposition search algorithm,the detection device realizes the function of automatically searching for smoldering charcoal.Experimental data shows that the average CO concentration over the covered smoldering charcoal decreases exponentially with increasing height.The size of the search step is related to the reliability of the search algorithm.The detection success corresponding to the small step length is high but the search time is lengthy which can lead to search failure.The introduction of step and rotation factors in search algorithm improves the search efficiency.This study reveals that the average ground CO concentration directly above smoldering charcoal in forests changes with height.Based on this law,a CO gas sensor detection device for hidden smoldering fires has been designed,which enriches the technique of residual fire detection.
文摘Based on spin-polarized density functional theory (DFT) calculations, the interaction between nickel cluster decorated single-wall carbon nanotube (CNT) and CO molecule has been investigated. DFT calculations are performed with generalized gradient approximation (GGA) using Perdew-Burke-Ernzerhof (PBE) functional. Interaction of CNT and cluster induces spin polarization in the CNT. Nickel decorated CNT has a large magnetic moment of 4.00 μB which decreases to 0.10 μB when CO molecule is absorbed to it. Such a drastic reduction in magnetization may be detected by SQUID magnetometer. Hence by measuring magnetization change, CNT-cluster system may be used as gas detectors. The charge transfer between the systems has been discussed through Mulliken charge analysis for different orientations of the adsorbed CO molecule. We observed that CNT-cluster system acts as electron donor and CO molecule acts as electron acceptor in this study.
基金The authors are grateful for the financial supports of the National Natural Science Foundation of China (20003005) Science and Technology Developemnt Program+3 种基金 Jilin Province China (990113) and Nature Science Foundation Jiangsu Province China (
文摘It is reported for the first time that the Pt/TiO2 electrocatalyst was successfully used for the electrocatalytic oxidation of CO in the electrochemical gas sensor with a controlled potential mode. The stability of electrocatalytic activity of the Pt-TiO2 electrocatalyst for the CO oxidation is better than that of Pt.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804015 )the Science Foundation of the Education Department of Liaoning Province of China (Grant No. 2009A417)
文摘yb^3+:Er^3+ co-doped oxy-fluoride ceramics glass has been prepared. The mechanism of up-conversion emissions about Er^3+ was discussed, and the temperature properties of green up-conversion fluorescence between 303 and 823 K were investigated. The results show that the sensitivity of this sample reaches its maximum value, about 0.0047 K^-1, when the temperature is 383 K, indicating that this kind of sample can be used as high temperature and high sensitivity optical temperature sensor.
文摘Critical situations that cannot be solved by conventional approaches (traditional air quality monitoring networks), have the possibility of being managed quickly by a wide network of portable systems with sensors. The purpose of this research was to calibrate and validate low-cost sensors. Pilot indoor and outdoor areas, in the central area of Brasilia (Brazil’s capital city) were chosen for corporative performance evaluation of the sensors. The CO at 99.999% volumetric injection method has been used in a gas test box, among two MiCS-5521 (CO/VOC) sensors, one being new and the other one with a short useful life. The number of injections adopted to each volume (from 1 ml to 6 ml) was 10, rising each sensor’s confidence interval mean. A increase of the injected volume (ml) of CO resulted in significant decrease in a resistance (Ohms), as shown by a good inverse relationship on the interaction of these two variables (r = 0.88), with good measurement accuracy, when compared to the manufacturer’s reference datasheet. Finally, a geospatial management system was built for the pollution data measured by the low-cost sensors.
文摘Activity recognition of indoor occupants using indirect sensing with less privacy violation is one of the hot research topics. This paper proposes a CO<sub>2</sub> sensor-based indoor occupant activity monitoring system. Using the IoT sensor node that contains CO<sub>2</sub> sensors, the measured CO<sub>2</sub> concentrations in three locations (laboratory, office, and bedroom) were stored in a cloud server for up to 35 days starting July 1, 2023. The CO<sub>2</sub> measurements stored at 30-second intervals were statistically processed to produce a heat-mapped display of the hourly average or maximum CO<sub>2</sub> concentration. From the heatmap visualizations of CO<sub>2</sub> concentration, the proposed system estimated meeting, heating water using a portable stove, and sleep for the occupants’ activity recognition.