Rice-duck co-culture is an integrated farming technology that benefits rice production, grain quality, and ecological sustainability in paddy fields. However, little is known about the effects of rice-duck co-culture ...Rice-duck co-culture is an integrated farming technology that benefits rice production, grain quality, and ecological sustainability in paddy fields. However, little is known about the effects of rice-duck co-culture on enzyme activity involved in the biosynthesis of 2-acetyl-1-pyrroline (2-AP), the volatile that gives fragrant rice its' distinctive and sought-after aroma. The present study aimed to examine the influence of rice-duck co-culture on the photosynthesis, yield, grain quality, rice aroma, and the enzymes involved in 2-acetyl-1-pyrroline biosynthesis in the cultivar Meixiangzhan 2 during the early and late rice growing seasons of 2016 in Guangzhou, China. We compared the rice grown in paddy fields with and without ducks. We found that rice-duck co-culture not only improved the yield and quality of fragrant rice grain, but also promoted the precursors of 2-AP biosynthesis formation and 2-AP accumulation in the grain. Grain 2-AP content in rice-duck co-culture was noticeably increased with 9.60% and 20.81% in early and late seasons, respectively. Proline and pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP biosynthesis) and the activity of enzymes such as proline dehydrogenase (ProDH), ornithine aminotransferase (OAT) and Δ1 pyrroline-5-carboxylic acid synthetase (P5CS) were all improved by 10.15%–12.99%, 32.91%–47.75%, 17.81%–26.71%, 6.25%–21.78%, and 10.58%–38.87% under rice-duck co-culture in both seasons, respectively. Overall, our results suggest that rice-duck co-culture is an environmentally-friendly and sustainable approach to improving rice aroma and grain quality of fragrant rice.展开更多
The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Ni...The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cv. Xanthi (nn, Smith)) leaf disks. We compared the effect of temperatures ranging from 15°C, 18°C, 20°C, 22°C to 25°C on the stable expression of β-glucuronidase (GUS) activity of 14 days old hygromycin-selected leaf disks, and on the increase in the fresh weight yield of 28 days old kanamycin-selected calli. The highest average of GUS activity was obtained at 20°C among the five temperatures tested although the difference between the 18°C and 20°C treatment was not statistically significant. The GUS activity at 15°C was statistically lower than those at 18°C and 20°C. The GUS activity in 22°C treatment was an intermediate between the highest (18/20°C) and second highest averages (15°C), and was not statistically significantly different. The lowest average of GUS activity was observed at 25°C. The highest increase in the plate average of fresh weight yield was obtained at 20°C among the five temperature tested. The 20°C treatment was statistically significantly better than the 15°C and 18°C treatments. The 20°C co-cultivation treatment resulted in the higher FW yield than 22°C and 25°C even though the differences were not statistically significant. In conclusion, low co-cultivation temperature at 20°C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after transformation of tobacco leaf disks.展开更多
This paper presents the results of batch anaerobic co-digestion of matooke, cassava, and sweet potato peels and vines. These agricultural wastes and others form the biggest portion of household wastes in developing co...This paper presents the results of batch anaerobic co-digestion of matooke, cassava, and sweet potato peels and vines. These agricultural wastes and others form the biggest portion of household wastes in developing countries. However, they have remained an unexploited resource amidst the ever increasing needs of clean energy and waste disposal challenges. Efforts to use them individually as biogas substrates have been associated with process acidification failure resulting from their fast hydrolysis. The aim of this work was to exploit agricultural wastes is co-digestion among themselves and assess their effect on methane yield and its kinetics, pH and hydraulic retention time (HRT). Sixteen ratios of Matooke peels (MP), cassava peels (CP) and sweet potato peels (SP) were assessed in duplicate. Methane yield and its kinetics, pH and HRT demonstrated dependence on the proportion of substrates in the mixture. Depending on the ratio mixture, HRT increased to 15 days compared to less than 5 days for single substrates, hydrolysis rate constant (k) reduced to a range of 0.1 - 0.3 d<sup>-1</sup> compared to single substrates whose k-values were above 0.5 d<sup>-1</sup>, pH was maintained in the range of 6.38 - 6.43 and CH<sub>4</sub> yield increased by 15% - 200%. Ratios 2:1:0, 2:0:1, 0:1:2, 1:1:1 and 1:1:4 were consistent all through in terms of model fitting, having a positive synergetic effect on HRT, hydrolysis rate constant, lag phase and methane yield. However, more research is needed in maintaining the pH near the neutral for process stability assurance if household wastes are to be used as standalone substrates for biogas production without being co-substrates with livestock manure.展开更多
基金supported by the National Key Research and Development Program of China(2020YFB0606404)National Natural Science Foundation of China(21991092,22272195,U2003123,U1910203).
基金supported by the Science and Technology Project of Guangdong Province (2015B090903077, 2016A020210094, 2017A090905030), Chinathe Science and Technology Project of Guangzhou (201604020062), China+1 种基金the Innovation Team Construction Project of Modern Agricultural Industry Technology System of Guangdong Province (2016LM1100), Chinathe Overseas Joint Doctoral Training Program of South China Agricultural University (2018LHPY010), China
文摘Rice-duck co-culture is an integrated farming technology that benefits rice production, grain quality, and ecological sustainability in paddy fields. However, little is known about the effects of rice-duck co-culture on enzyme activity involved in the biosynthesis of 2-acetyl-1-pyrroline (2-AP), the volatile that gives fragrant rice its' distinctive and sought-after aroma. The present study aimed to examine the influence of rice-duck co-culture on the photosynthesis, yield, grain quality, rice aroma, and the enzymes involved in 2-acetyl-1-pyrroline biosynthesis in the cultivar Meixiangzhan 2 during the early and late rice growing seasons of 2016 in Guangzhou, China. We compared the rice grown in paddy fields with and without ducks. We found that rice-duck co-culture not only improved the yield and quality of fragrant rice grain, but also promoted the precursors of 2-AP biosynthesis formation and 2-AP accumulation in the grain. Grain 2-AP content in rice-duck co-culture was noticeably increased with 9.60% and 20.81% in early and late seasons, respectively. Proline and pyrroline-5-carboxylic acid (P5C) (precursors of 2-AP biosynthesis) and the activity of enzymes such as proline dehydrogenase (ProDH), ornithine aminotransferase (OAT) and Δ1 pyrroline-5-carboxylic acid synthetase (P5CS) were all improved by 10.15%–12.99%, 32.91%–47.75%, 17.81%–26.71%, 6.25%–21.78%, and 10.58%–38.87% under rice-duck co-culture in both seasons, respectively. Overall, our results suggest that rice-duck co-culture is an environmentally-friendly and sustainable approach to improving rice aroma and grain quality of fragrant rice.
文摘The importance of controlled temperature during the four-days co-cultivation period was evaluated under the most physiologically relevant conditions for Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L. cv. Xanthi (nn, Smith)) leaf disks. We compared the effect of temperatures ranging from 15°C, 18°C, 20°C, 22°C to 25°C on the stable expression of β-glucuronidase (GUS) activity of 14 days old hygromycin-selected leaf disks, and on the increase in the fresh weight yield of 28 days old kanamycin-selected calli. The highest average of GUS activity was obtained at 20°C among the five temperatures tested although the difference between the 18°C and 20°C treatment was not statistically significant. The GUS activity at 15°C was statistically lower than those at 18°C and 20°C. The GUS activity in 22°C treatment was an intermediate between the highest (18/20°C) and second highest averages (15°C), and was not statistically significantly different. The lowest average of GUS activity was observed at 25°C. The highest increase in the plate average of fresh weight yield was obtained at 20°C among the five temperature tested. The 20°C treatment was statistically significantly better than the 15°C and 18°C treatments. The 20°C co-cultivation treatment resulted in the higher FW yield than 22°C and 25°C even though the differences were not statistically significant. In conclusion, low co-cultivation temperature at 20°C resulted in the reproducible maximum increase in both the fresh weight yield and stable expression of GUS activity after transformation of tobacco leaf disks.
文摘This paper presents the results of batch anaerobic co-digestion of matooke, cassava, and sweet potato peels and vines. These agricultural wastes and others form the biggest portion of household wastes in developing countries. However, they have remained an unexploited resource amidst the ever increasing needs of clean energy and waste disposal challenges. Efforts to use them individually as biogas substrates have been associated with process acidification failure resulting from their fast hydrolysis. The aim of this work was to exploit agricultural wastes is co-digestion among themselves and assess their effect on methane yield and its kinetics, pH and hydraulic retention time (HRT). Sixteen ratios of Matooke peels (MP), cassava peels (CP) and sweet potato peels (SP) were assessed in duplicate. Methane yield and its kinetics, pH and HRT demonstrated dependence on the proportion of substrates in the mixture. Depending on the ratio mixture, HRT increased to 15 days compared to less than 5 days for single substrates, hydrolysis rate constant (k) reduced to a range of 0.1 - 0.3 d<sup>-1</sup> compared to single substrates whose k-values were above 0.5 d<sup>-1</sup>, pH was maintained in the range of 6.38 - 6.43 and CH<sub>4</sub> yield increased by 15% - 200%. Ratios 2:1:0, 2:0:1, 0:1:2, 1:1:1 and 1:1:4 were consistent all through in terms of model fitting, having a positive synergetic effect on HRT, hydrolysis rate constant, lag phase and methane yield. However, more research is needed in maintaining the pH near the neutral for process stability assurance if household wastes are to be used as standalone substrates for biogas production without being co-substrates with livestock manure.