观察点阵CO2激光术后联合重组贻贝粘蛋白水凝胶敷料疗效及安全性。方法 选取2022 年9月—2023年9月来我院皮肤科室治疗痤疮凹陷性瘢痕的患者60例,采用双盲数字法将其平均分为研究组30例和对照组30例,其中对照组患者使用点阵CO2激光治疗...观察点阵CO2激光术后联合重组贻贝粘蛋白水凝胶敷料疗效及安全性。方法 选取2022 年9月—2023年9月来我院皮肤科室治疗痤疮凹陷性瘢痕的患者60例,采用双盲数字法将其平均分为研究组30例和对照组30例,其中对照组患者使用点阵CO2激光治疗,研究组患者在采用点阵CO2激光的基础上联合重组贻贝粘蛋白水凝胶敷料治疗。治疗28d后对两组患者临床疗效、瘢痕皮损、面部红斑量、经表皮水分流失量、临床痤疮瘢痕情况(ECCA评分量表)、面部整体美学效果改善情况(GAIS评分量表)和治疗期间的安全性进行对比。结果 治疗28d后研究组患者的临床总治疗有效率明显高于对照组(93.33% vs 63.33%),差异有统计学意义(P<0.05);治疗后,研究组患者的急性炎症反应半定量评分明显低于对照组(1.53±0.37 vs 2.16±0.28),而平均脱痂时间明显短于对照组(6.34±1.36d vs 8.27±1.86d),差异有统计学意义(P<0.05);治疗后两组患者的ECCA权重评分较治疗前均显著降低,而两组患者的GAIS评分较治疗前显著升高,差异均具有统计学意义(P<0.05),其中研究组患者相较于对照组患者而言ECCA降低更多(15.78±5.28 vs 23.62±6.29),而GAIS升高更多(2.57±0.61 vs 2.13±0.56) ,差异具有统计学意义(P<0.05);两组不良反应发生率差异无统计学意义(P>0.05)。结论 重组贻贝粘蛋白水凝胶敷料联合点阵CO2激光治疗痤疮凹陷性瘢痕疗效确切,可减少点阵CO2激光术不良反应,缩短恢复期,提高皮肤屏障功能与美观度。展开更多
Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores ...Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.展开更多
Objective:To explore the value of using the venous-arterial carbon dioxide partial pressure difference and the arterial-venous oxygen content difference ratio(ΔP_(CO2)/Ca-v_(O2))as targets to guide early tissue hypop...Objective:To explore the value of using the venous-arterial carbon dioxide partial pressure difference and the arterial-venous oxygen content difference ratio(ΔP_(CO2)/Ca-v_(O2))as targets to guide early tissue hypoperfusion in sepsis in plateau areas.Methods:90 sepsis patients admitted to the Third People’s Hospital of Xining and Golmud People’s Hospital from June 2017 to December 2022 were selected as the research subjects,and they were divided into the Scv_(O2)(central venous oxygen saturation)group and theΔP_(CO2)/Ca-v_(O2)group,with 45 cases in each group.The two groups were treated with early shock resuscitation according to different protocols.The hemodynamic characteristics of the two groups of patients before and after resuscitation were observed,and the volume responsiveness was evaluated.The ROC(receiver operating characteristic)curve was used to analyze the significance ofΔP_(CO2)/Ca-v_(O2),Scv_(O2),lactate,lactate clearance,and urine output in evaluating patient prognosis and the correlation betweenΔP_(CO2)/Ca-v_(O2)and the above indicators was explored.Results:Compared with before resuscitation,after fluid resuscitation,the heart rate(HR),mean arterial pressure(MAP),central venous pressure(CVP),cardiac index(CI),lactate,lactate clearance rate,and urine output of the two groups of patients were significantly improved(P<0.05);in terms of therapeutic effect,the 28-day mortality rate,6-hour fluid balance,and lactic acid clearance of theΔP_(CO2)/Ca-v_(O2)group were better than the Scv_(O2)group.The ROC characteristic curve showed that theΔP_(CO2)/Ca-v_(O2)value can effectively predict the prognosis of patients(AUC=0.907,sensitivity was 97%,specificity was 72.4%,and critical value was 1.84).ΔP_(CO2)/Ca-v_(O2)significantly correlated with Scv_(O2),lactic acid,and lactic acid clearance rate.Conclusion:TheΔP_(CO2)/Ca-v_(O2)value can be used to guide fluid resuscitation in early hypoperfusion in sepsis in plateau areas,improve patients’hemodynamics,reduce lactate indicators,and increase urine output.ΔP_(CO2)/Ca-v_(O2)level>1.84 can effectively improve patient prognosis.展开更多
Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temper...Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .展开更多
The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible ligh...The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.展开更多
Electrochemical reduction of CO_(2)to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimen...Electrochemical reduction of CO_(2)to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2)reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2)ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2)and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2)ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2)ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application.展开更多
The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its ther...The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.展开更多
We measured the IR back radiation using a relatively low-cost experimental setup and a test chamber with increasing CO2 concentrations starting with a pure N2 atmosphere against a temperature-controlled black referenc...We measured the IR back radiation using a relatively low-cost experimental setup and a test chamber with increasing CO2 concentrations starting with a pure N2 atmosphere against a temperature-controlled black reference background. The results confirm estimations within this work and previous finding about CO2-induced infrared radiation saturation within realistic atmospheric conditions. We used this setup also to study thermal forcing effects with stronger and rare greenhouse gases against a clear night sky. Our results and their interpretation are another indication for having a more critical approach in climate modelling and against monocausal interpretation of climate indices only caused by anthropogenic greenhouse gas emissions. Basic physics combined with measurements and data taken from the literature allow us to conclude that CO2 induced infrared back-radiation must follow an asymptotic logarithmic-like behavior, which is also widely accepted in the climate-change community. The important question of climate sensitivity by doubling current CO2 concentrations is estimated to be below 1˚C. This value is important when the United Nations consider climate change as an existential threat and many governments intend rigorously to reduce net greenhouse gas emissions, led by an ambitious European Union inspired by IPCC assessments is targeting for more than 55% in 2030 and up to 100% in 2050 [1]. But probably they should also listen to experts [2] [3] who found that all these predictions have considerable flaws in basic models, data and impact scenarios.展开更多
This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, ...This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, USA to capture and redirect emissions to a direct air capture (DAC) device to sequester 25% of the total CO2 mass generated from inside the tunnel. The total CO2 mass rate for the westbound traffic between the week-day hours of 7 a.m. and 6 p.m. has been estimated between 2,300 to 3,000 lbs./hr. By sequestering these emissions, the overall surrounding air quality was shown to be improved to a level that mirrors that from the pre-US industrial era of 270 ppm.展开更多
文摘观察点阵CO2激光术后联合重组贻贝粘蛋白水凝胶敷料疗效及安全性。方法 选取2022 年9月—2023年9月来我院皮肤科室治疗痤疮凹陷性瘢痕的患者60例,采用双盲数字法将其平均分为研究组30例和对照组30例,其中对照组患者使用点阵CO2激光治疗,研究组患者在采用点阵CO2激光的基础上联合重组贻贝粘蛋白水凝胶敷料治疗。治疗28d后对两组患者临床疗效、瘢痕皮损、面部红斑量、经表皮水分流失量、临床痤疮瘢痕情况(ECCA评分量表)、面部整体美学效果改善情况(GAIS评分量表)和治疗期间的安全性进行对比。结果 治疗28d后研究组患者的临床总治疗有效率明显高于对照组(93.33% vs 63.33%),差异有统计学意义(P<0.05);治疗后,研究组患者的急性炎症反应半定量评分明显低于对照组(1.53±0.37 vs 2.16±0.28),而平均脱痂时间明显短于对照组(6.34±1.36d vs 8.27±1.86d),差异有统计学意义(P<0.05);治疗后两组患者的ECCA权重评分较治疗前均显著降低,而两组患者的GAIS评分较治疗前显著升高,差异均具有统计学意义(P<0.05),其中研究组患者相较于对照组患者而言ECCA降低更多(15.78±5.28 vs 23.62±6.29),而GAIS升高更多(2.57±0.61 vs 2.13±0.56) ,差异具有统计学意义(P<0.05);两组不良反应发生率差异无统计学意义(P>0.05)。结论 重组贻贝粘蛋白水凝胶敷料联合点阵CO2激光治疗痤疮凹陷性瘢痕疗效确切,可减少点阵CO2激光术不良反应,缩短恢复期,提高皮肤屏障功能与美观度。
基金Supported by the National High-Level Hospital Clinical Research Fund,No.2022-PUMCH-A-020the Undergraduate Teaching Reform and Innovation Project,No.2022zlgc0108.
文摘Chronic enteropathy associated with the SLCO2A1 gene(CEAS)is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss.This review explores the potential mechanisms underlying the pathogenesis of CEAS,focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2(PGE2)levels.Studies have suggested that elevated PGE2 levels contribute to mucosal damage,inflammation,and disruption of the intestinal barrier.The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality,as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS.Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel,targeted therapies.
基金2017 Xining Citizens’Biotechnology Plan Project(Project number:2017-K-15)。
文摘Objective:To explore the value of using the venous-arterial carbon dioxide partial pressure difference and the arterial-venous oxygen content difference ratio(ΔP_(CO2)/Ca-v_(O2))as targets to guide early tissue hypoperfusion in sepsis in plateau areas.Methods:90 sepsis patients admitted to the Third People’s Hospital of Xining and Golmud People’s Hospital from June 2017 to December 2022 were selected as the research subjects,and they were divided into the Scv_(O2)(central venous oxygen saturation)group and theΔP_(CO2)/Ca-v_(O2)group,with 45 cases in each group.The two groups were treated with early shock resuscitation according to different protocols.The hemodynamic characteristics of the two groups of patients before and after resuscitation were observed,and the volume responsiveness was evaluated.The ROC(receiver operating characteristic)curve was used to analyze the significance ofΔP_(CO2)/Ca-v_(O2),Scv_(O2),lactate,lactate clearance,and urine output in evaluating patient prognosis and the correlation betweenΔP_(CO2)/Ca-v_(O2)and the above indicators was explored.Results:Compared with before resuscitation,after fluid resuscitation,the heart rate(HR),mean arterial pressure(MAP),central venous pressure(CVP),cardiac index(CI),lactate,lactate clearance rate,and urine output of the two groups of patients were significantly improved(P<0.05);in terms of therapeutic effect,the 28-day mortality rate,6-hour fluid balance,and lactic acid clearance of theΔP_(CO2)/Ca-v_(O2)group were better than the Scv_(O2)group.The ROC characteristic curve showed that theΔP_(CO2)/Ca-v_(O2)value can effectively predict the prognosis of patients(AUC=0.907,sensitivity was 97%,specificity was 72.4%,and critical value was 1.84).ΔP_(CO2)/Ca-v_(O2)significantly correlated with Scv_(O2),lactic acid,and lactic acid clearance rate.Conclusion:TheΔP_(CO2)/Ca-v_(O2)value can be used to guide fluid resuscitation in early hypoperfusion in sepsis in plateau areas,improve patients’hemodynamics,reduce lactate indicators,and increase urine output.ΔP_(CO2)/Ca-v_(O2)level>1.84 can effectively improve patient prognosis.
文摘Changes in CO2 and temperature are correlated, but it is difficult to observe which is the cause and which is the effect. The release of CO2 dissolved in the ocean into the atmosphere depends on the atmospheric temperature. However, examining the relationship between changes in CO2 caused by other phenomena and temperature is difficult. Studies of soil respiration (Rs) since the late 20th century have shown that CO2 emissions from soil respiration (Rs) are overwhelmingly greater than CO2 emissions from fossil fuel combustion. This is also noted in the IPCC carbon budget assessment. In this paper, the dependences of Rs on temperature, time, latitude, precipitation, seasons, etc., were investigated using the latest NASA database. The changes in temperature and Rs correlated well. There is also a good correlation between Rs and CO2 generation. Therefore, an increase in temperature results in an increase in CO2. On the other hand, there is no evidence other than model calculations that an increase in anthropogenic CO2 is mainly linked to a rise in temperature. The idea that global warming is caused by anthropogenic CO2 production is still a hypothesis. For these reasons, the relationship between global warming and anthropogenic CO2 should be reconsidered based on physical evidence without preconceptions. .
文摘The analysis of Greenhouse Effect experiments in the public domain indicated that the lab tests were primarily centered around illustrating the mechanics of conventional greenhouses. They used high-energy visible light (such as sunlight), rather than addressing the Greenhouse Effect, which involves low-energy infrared radiation emitted by the Earth’s surface. Studies with argon, a non-greenhouse gas with similar density to CO2, showed thermal heat transfer as the dominant factor in the temperature profiles, with radiation absorption being undetected. The same conclusion was drawn by another study, which measured infrared back radiation. Experiments using exaggerated CO2 concentrations inadvertently illustrated the principle of the Popper Falsification Test by disproving the Greenhouse Effect applicable to CO2 within the troposphere. A straightforward kitchen test showed that a microwave oven cannot be used as a model for the Greenhouse Effect.
基金National Natural Science Foundation of China,Grant/Award Numbers:51873085,52071171,52202248The Australian Government through the Cooperative Research Centres Projects,Grant/Award Number:CRCPⅩⅢ000077+10 种基金Linkage Project,Grant/Award Numbers:LP210100467,LP210200345,LP210200504,LP220100088Natural Science Foundation of Liaoning Province‐Outstanding Youth Foundation,Grant/Award Number:2022‐YQ‐14Discovery Project,Grant/Award Number:DP220100603China Scholarship Council(CSC Scholarship),Grant/Award Number:202006800009Liaoning Revitalization Talents Program,Grant/Award Number:XLYC2007056Australian Research Council(ARC)through Future Fellowship,Grant/Award Numbers:FT210100298,FT210100806Shenyang Science and Technology Project,Grant/Award Number:21‐108‐9‐04Industrial Transformation Training Centre schemes,Grant/Award Number:IC180100005Natural Science Foundation of Liaoning Province,Grant/Award Number:2020‐MS‐137Key Research Project of Department of Education of Liaoning Province,Grant/Award Number:LJKZZ20220015Liaoning BaiQianWan Talents Program,Grant/Award Number:LNBQW2018B0048。
文摘Electrochemical reduction of CO_(2)to syngas(CO and H_(2))offers an efficient way to mitigate carbon emissions and store intermittent renewable energy in chemicals.Herein,the hierarchical one‐dimensional/three‐dimensional nitrogen‐doped porous carbon(1D/3D NPC)is prepared by carbonizing the composite of Zn‐MOF‐74 crystals in situ grown on a commercial melamine sponge(MS),for electrochemical CO_(2)reduction reaction(CO_(2)RR).The 1D/3D NPC exhibits a high CO/H_(2)ratio(5.06)and CO yield(31 mmol g^(−1)h^(−1))at−0.55 V,which are 13.7 times and 21.4 times those of 1D porous carbon(derived from Zn‐MOF‐74)and N‐doped carbon(carbonized by MS),respectively.This is attributed to the unique spatial environment of 1D/3D NPC,which increases the adsorption capacity of CO_(2)and promotes electron transfer from the 3D N‐doped carbon framework to 1D carbon,improving the reaction kinetics of CO_(2)RR.Experimental results and charge density difference plots indicate that the active site of CO_(2)RR is the positively charged carbon atom adjacent to graphitic N on 1D carbon and the active site of HER is the pyridinic N on 1D carbon.The presence of pyridinic N and pyrrolic N reduces the number of electron transfer,decreasing the reaction kinetics and the activity of CO_(2)RR.The CO/H_(2)ratio is related to the distribution of N species and the specific surface area,which are determined by the degree of spatial confinement effect.The CO/H_(2)ratios can be regulated by adjusting the carbonization temperature to adjust the degree of spatial confinement effect.Given the low cost of feedstock and easy strategy,1D/3D NPC catalysts have great potential for industrial application.
文摘The use of carbon dioxide as a working fluid has been the subject of extensive studies in recent years, particularly in the field of refrigeration where it is at the heart of research to replace CFC and HCFC. Its thermodynamic properties make it a fluid of choice in the efficient use of energy at low and medium temperatures in engine cycles. However, the performance of transcritical CO2 cycles weakens under high temperature and pressure conditions, especially in refrigeration systems;On the other hand, this disadvantage becomes rather interesting in engine cycles where CO2 can be used as an alternative to the organic working fluid in small and medium-sized electrical systems for low quality or waste heat sources. In order to improve the performance of systems operating with CO2 in the field of refrigeration and electricity production, research has made it possible to develop several concepts, of which this article deals with a review of the state of the art, followed by analyzes in-depth and critical of the various developments to the most recent modifications in these fields. Detailed discussions on the performance and technical characteristics of the different evolutions are also highlighted as well as the factors affecting the overall performance of the systems studied. Finally, perspectives on the future development of the use of CO2 in these different cycles are presented.
文摘We measured the IR back radiation using a relatively low-cost experimental setup and a test chamber with increasing CO2 concentrations starting with a pure N2 atmosphere against a temperature-controlled black reference background. The results confirm estimations within this work and previous finding about CO2-induced infrared radiation saturation within realistic atmospheric conditions. We used this setup also to study thermal forcing effects with stronger and rare greenhouse gases against a clear night sky. Our results and their interpretation are another indication for having a more critical approach in climate modelling and against monocausal interpretation of climate indices only caused by anthropogenic greenhouse gas emissions. Basic physics combined with measurements and data taken from the literature allow us to conclude that CO2 induced infrared back-radiation must follow an asymptotic logarithmic-like behavior, which is also widely accepted in the climate-change community. The important question of climate sensitivity by doubling current CO2 concentrations is estimated to be below 1˚C. This value is important when the United Nations consider climate change as an existential threat and many governments intend rigorously to reduce net greenhouse gas emissions, led by an ambitious European Union inspired by IPCC assessments is targeting for more than 55% in 2030 and up to 100% in 2050 [1]. But probably they should also listen to experts [2] [3] who found that all these predictions have considerable flaws in basic models, data and impact scenarios.
文摘This paper describes the design of a ventilation system to be paired with a carbon capture system. The ventilation system utilizes the geometry of the George C. Wallace tunnel, located in the City of Mobile, Alabama, USA to capture and redirect emissions to a direct air capture (DAC) device to sequester 25% of the total CO2 mass generated from inside the tunnel. The total CO2 mass rate for the westbound traffic between the week-day hours of 7 a.m. and 6 p.m. has been estimated between 2,300 to 3,000 lbs./hr. By sequestering these emissions, the overall surrounding air quality was shown to be improved to a level that mirrors that from the pre-US industrial era of 270 ppm.