期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Abiotic-Biological Hybrid Systems for CO2 Conversion to Value-Added Chemicals and Fuels 被引量:5
1
作者 Jiansheng Li Yao Tian +5 位作者 Yinuo Zhou Yongchao Zong Nan Yang Mai Zhang Zhiqi Guo Hao Song 《Transactions of Tianjin University》 EI CAS 2020年第4期237-247,共11页
Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to ... Abiotic-biological hybrid systems that combine the advantages of abiotic catalysis and biotransformation for the conversion of carbon dioxide(CO2)to value-added chemicals and fuels have emerged as an appealing way to address the global energy and environmental crisis caused by increased CO2 emission.We illustrate the recent progress in this field.Here,we first review the natural CO2 fixation pathways for an in-depth understanding of the biological CO2 transformation strategy and why a sustainable feed of reducing power is important.Second,we review the recent progress in the construction of abiotic-biological hybrid systems for CO2 transformation from two aspects:(i)microbial electrosynthesis systems that utilize electricity to support whole-cell biological CO2 conversion to products of interest and(ii)photosynthetic semiconductor biohybrid systems that integrate semiconductor nanomaterials with CO2-fixing microorganisms to harness solar energy for biological CO2 transformation.Lastly,we discuss potential approaches for further improvement of abiotic-biological hybrid systems. 展开更多
关键词 co2 conversion Abiotic-biological hybrid systems Microbial electrosynthesis systems Photosynthetic semiconductor biohybrid systems
下载PDF
Molybdenum carbide clusters for thermal conversion of CO2 to CO via reverse water-gas shift reaction 被引量:4
2
作者 Ying Ma Zhanglong Guo +3 位作者 Qian Jiang Kuang-Hsu Wu Huimin Gong Yuefeng Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第11期37-43,共7页
Molybdenum carbides are highly active for CO2 conversion to CO via the reverse water-gas shift(RWGS)reaction, however the large grain size up to micrometers renders its relatively lower active sites utilization effici... Molybdenum carbides are highly active for CO2 conversion to CO via the reverse water-gas shift(RWGS)reaction, however the large grain size up to micrometers renders its relatively lower active sites utilization efficiency while generating CH4 as a by-product. In this work, a homogeneously dispersed molybdenum carbide hybrid catalyst with sub-nanosized cluster(the average size as small as 0.5 nm) is prepared via a facile carbothermal treatment for highly selective CO2-CO reduction. The partially disordered Mo2C clusters are characterized by synchrotron high-resolution XRD and atomic resolution HAADF-STEM analysis, for which the source cause of the disorder is pinpointed by XAFS analysis to be the nitrogen intercalants from the carbonaceous precursor. The partially disordered Mo2C clusters show a RWGS rate as high as 184.4 μmol gMo2C-1s-1 at 400 ℃ with a superior selectivity toward CO(> 99.5%). This work 2 highlights a facile strategy for fabricating highly dispersed and partially disordered Mo2C clusters at a sub-nano size with beneficial N-doping for delivering high catalytic activity and operational stability. 展开更多
关键词 co2 conversion Reverse water-gas-shift reaction Molybdenum carbide cluster Sub-nanosize CO selectivity
下载PDF
Size control synthesis of sulfur doped titanium dioxide (anatase) nanoparticles,its optical property and its photo catalytic reactivity for CO_2 + H_2O conversion and phenol degradation 被引量:8
3
作者 S. Tajammul Hussain Khaiber Khan R. Hussain 《Journal of Natural Gas Chemistry》 CAS CSCD 2009年第4期383-391,共9页
Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photoc... Sulfur doped anatase TiO2 nanoparticles (3 nm- 12 nm) were synthesized by the reaction of titanium tetrachloride, water and sulfuric acid with addition of 3 M NaOH at room temperature. The electro-optical and photocatalytic properties of the synthesized sulfur doped TiO2 nanoparticles were studied along with Degussa commercial TiO2 particles (24 nm). The results show that band gap of TiO2 particles decreases from 3.31 to 3.25 eV and for that of commercial TiO2 to 3.2 eV when the particle sizes increased from 3 nm to 12 nm with increase in sulfur doping. The results of the photocatalytic activity under UV and sun radiation show maximum phenol conversion at the particle size of 4 nm at 4.80% S-doping. Similar results are obtained using UV energy for both phenol conversion and conversion of CO2+H2O in which formation of methanol, ethanol and proponal is observed. Production of methanol is also achieved on samples with a particle size of 8 and 12 nm and sulfur doping of 4.80% and 5.26%. For TiO2 particle of 4 nm without S doping, the production of methanol, ethanol and proponal was lower as compared to the S-doped particles. This is attributed to the combined electronic effect and band gap change, S dopant, specific surface area and the light source used. 展开更多
关键词 S doped TiO2 PHOTOCATALYST co2 conversion phenol degradation UV IR radiation
下载PDF
Revalorization of CO2 for methanol production via ZnO promoted carbon nanofibers based Cu-ZrO2 catalytic hydrogenation 被引量:6
4
作者 Israf Ud Din Maizatul S.Shaharun +2 位作者 A.Naeem S Tasleem Pervaiz Ahmad 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期68-76,共9页
A series of novel carbon nanofibers(CNFs)based Cu-ZrO2 catalysts were synthesized by deposition precipitation method.To investigate the influence of promoter,catalysts were loaded with 1,2,3 and 4 wt%ZnO and character... A series of novel carbon nanofibers(CNFs)based Cu-ZrO2 catalysts were synthesized by deposition precipitation method.To investigate the influence of promoter,catalysts were loaded with 1,2,3 and 4 wt%ZnO and characterized by ICP-OES,HRTEM,BET,N2O chemisorption,TPR,XPS and CO2-TPD techniques.The results revealed that physicochemical properties of the catalysts were strongly influenced by incorporation of ZnO to the parent catalyst.Copper surface area(SCu)and dispersion(DCu)were slightly decreased by incorporation of ZnO promoter.Nevertheless,SCuand DCuwere remarkably decreased when ZnO content was exceeded beyond 3 wt%.The catalytic performance was evaluated by using autoclave slurry reactor at a pressure and temperature of 30 bar and 180℃,respectively.The promotion of CuZrO2/CNFs catalyst with 3 wt%of ZnO enhanced methanol synthesis rate from 32 to 45 g kg^-1 h^-1.Notably,with the ZnO promotion the selectivity to methanol was enhanced to 92%compared to 78%of the un-promoted Cu-ZrO2/CNFs catalyst at the expense of a lowered CO2 conversion.In addition,the catalytic activity of this novel catalyst system for CO2 hydrogenation to methanol was compared with the recent literature data. 展开更多
关键词 Methanol synthesis Slurry reactor Promoter effect Chemisorption studies CNFs co2 conversion
下载PDF
Electrocatalytic conversion of CO_2 to liquid fuels using nanocarbon-based electrodes 被引量:5
5
作者 Chiara Genovese Claudio Ampelli +1 位作者 Siglinda Perathoner Gabriele Centi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第2期202-213,共12页
Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell,... Recent advances on the use of nanocarbon-based electrodes for the electrocatalytic conversion of gaseous streams of CO2 to liquid fuels are discussed in this perspective paper. A novel gas-phase electrocatalytic cell, different from the typical electrochemical systems working in liquid phase, was developed. There are several advantages to work in gas phase, e.g. no need to recover the products from a liquid phase and no problems of CO2 solubility, etc. Operating under these conditions and using electrodes based on metal nanoparticles supported over carbon nanotube (CNT) type materials, long C-chain products (in particular isopropanol under optimized conditions, but also hydrocarbons up to C8-C9) were obtained from the reduction of CO2. Pt-CNT are more stable and give in some cases a higher productivity, but Fe-CNT, particular using N-doped carbon nanotubes, give excellent properties and are preferable to noble-metal-based electrocatalysts for the lower cost. The control of the localization of metal particles at the inner or outer surface of CNT is an importact factor for the product distribution. The nature of the nanocarbon substrate also plays a relevant role in enhancing the productivity and tuning the selectivity towards long C-chain products. The electrodes for the electrocatalytic conversion of CO2 are part of a photoelectrocatalytic (PEC) solar cell concept, aimed to develop knowledge for the new generation artificial leaf-type solar cells which can use sunlight and water to convert CO2 to fuels and chemicals. The CO2 reduction to liquid fuels by solar energy is a good attempt to introduce renewables into the existing energy and chemical infrastructures, having a higher energy density and easier transport/storage than other competing solutions (i.e. H2). 展开更多
关键词 co2 conversion solar fuels CNT Fe nanoparticles NANOCARBON H2 production
下载PDF
Protic vs aprotic ionic liquid for CO2 fixation:A simulation study 被引量:6
6
作者 Wenzhong Sun Meichen Wang +4 位作者 Yaqin Zhang Weilu Ding Feng Huo Li Wei Hongyan He 《Green Energy & Environment》 SCIE CSCD 2020年第2期183-194,共12页
The cycloaddition of CO2 with epoxides catalyzed by ionic liquids(ILs)has been a widely ongoing studied hot topic over the years.Recent experimental research has shown that the protic ionic liquids(PILs)behave stronge... The cycloaddition of CO2 with epoxides catalyzed by ionic liquids(ILs)has been a widely ongoing studied hot topic over the years.Recent experimental research has shown that the protic ionic liquids(PILs)behave stronger hydrogen proton donating ability than aprotic ionic liquids(APILs),and can effectively catalyze the cycloaddition of CO2.Unfortunately,the mechanistic explanation remains primarily unraveled.Herein,a detailed simulation study on the cycloaddition reaction catalyzed by PIL([HDBU][Mim])in comparison with APIL([MeDBU][Mim])re-action catalysts was conducted,including the three-step route(ring-opening of PO(propylene oxide),insertion of CO2 and ring-closure of propylene carbonate(PC))and two-step route(simultaneously ring-opening of PO and addition of CO2,and then ring-closure of PC).Based on the activation energy barrier of the rate-determining step,PIL preferentially activates PO as the optimal route for the reaction with the energy barrier of 23.2 kcal mol-1,while that of APIL is 31.2 kcal mol-1.The role of[HDBU]+in the reaction was also explored and found that the direct formation of intermolecular hydrogen bond(H-bond)between[HDBU]+and the reactants(PO+CO2)was unfavorable for the reaction,while the cooperation with the anion[Mim]-to assist indirectly was more conducive.To fully consider the reaction microenvironment of ILs,ONIOM calculation was used to study the solvent effect.At last,the above conclusions were further verified by the analysis of intermediates with charge,non-covalent interaction(NCI),and atoms in molecules(AIM)methods.The computational findings show that ILs studied in this work have dual functions of catalyst and solvent,enabling a microscopic understanding of the ILs catalyst for CO2 utilization as well as providing guidance for the rational design of more efficient ILs-based catalysts. 展开更多
关键词 Ionic liquid co2 conversion CYCLOADDITION Synergistic catalysis DFT calculations
下载PDF
Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma 被引量:3
7
作者 陈攀 沈俊 +2 位作者 冉唐春 杨涛 印永祥 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第12期119-124,共6页
Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process en... Experiments of CO_2 splitting by dielectric barrier discharge(DBD) plasma were carried out, and the influence of CO_2 flow rate, plasma power, discharge voltage, discharge frequency on CO_2 conversion and process energy efficiency were investigated. It was shown that the absolute quantity of CO_2 decomposed was only proportional to the amount of conductive electrons across the discharge gap,and the electron amount was proportional to the discharge power; the energy efficiency of CO_2 conversion was almost a constant at a lower level, which was limited by CO_2 inherent discharge character that determined a constant gap electric field strength. This was the main reason why CO_2 conversion rate decreased as the CO_2 flow rate increase and process energy efficiency was decreased a little as applied frequency increased. Therefore, one can improve the CO_2 conversion by less feed flow rate or larger discharge power in DBD plasma, but the energy efficiency is difficult to improve. 展开更多
关键词 co2 splitting dielectric barrier discharges conversion energy efficiency
下载PDF
Synthesis of Cyclic Carbonates from Alkenyl and Alkynyl Substrates 被引量:3
8
作者 Bo Zou Changwen Hu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2017年第5期541-550,共10页
As an extensively used chemical product,cyclic carbonate was generally synthesized by transesterification,or the cycloaddition of epoxides,diols with CO2.To reduce the production costs and expand the raw materials,alk... As an extensively used chemical product,cyclic carbonate was generally synthesized by transesterification,or the cycloaddition of epoxides,diols with CO2.To reduce the production costs and expand the raw materials,alkenyl and alkynyl substrates have caused much attention in the synthesis of cyclic carbonates,such as olefins,allyl alcohols and propargylic alcohols.Based on the alkenyl substrate,the synthetic process involves a continuous reaction of oxidative carboxylation,with epoxide or halohydrin as an intermediate usually.Therefore,peroxides and nucleophiles (halogens or organic bases) are often necessary in the conversion.Using propargylic alcohols to produce a-alkylidene cyclic carbonates,noble metal catalysts play crucial roles in alkynyl activation,and organic bases are considered to assist the intramolecular and intermolecular proton transfer and combine CO2 molecular.As the carboxyl sources in products,inorganic carbonates and organic carboxylic acids also have some applications instead of CO2.In this review,we summarized the synthetic routes of cyclic carbonates from alkenyl and alkynyl substrates in the aspect of catalyst,mechanism and the development tendency. 展开更多
关键词 cyclic carbonates co2 conversion OLEFINS propargylic alcohols
原文传递
Facile synthesis and enhanced visible-light photocatalytic activity of Ti3 +-doped Ti02 sheets with tunable phase composition 被引量:2
9
作者 Xiaojie Zhang Lei Wang +3 位作者 Shuqing Chen Yi Huang Zhuonan Song Miao Yu 《Frontiers of Chemical Science and Engineering》 SCIE EI CAS CSCD 2015年第3期349-358,共10页
Ti3+-doped TiO2 nanosheets with tunable phase composition (doped TiO2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO2 nanosheets TiO2 (A) as a substrate, structure directin... Ti3+-doped TiO2 nanosheets with tunable phase composition (doped TiO2 (A/R)) were synthesized via a hydrothermal method with high surface area anatase TiO2 nanosheets TiO2 (A) as a substrate, structure directing agent, and inhibitor; the activity was evaluated using a probe reaction-photocatalytic CO2 conversion to methane under visible light irradiation with H2 as an electron donor and hydrogen source. High-resolution transmission electron microscope (HRTEM), field emission scanning electron microscope, UV-Vis diffuse reflectance spectra, and X-ray diffraction (XRD) etc., were used to characterize the photocatalysts. XRD and HRTEM measurements confirmed the existence of anatase-rutile phase junction, while Ti3-and single-electron-trapped oxygen vacancy in the doped TiO2 (A/R) photocatalyst were revealed byelectron paramagnetic resonance (EPR) measurements. Effects of hydrothermal synthesis temperature and the amount of added anatase TiO2 on the photocatalytic activity were elucidated. Significantly enhanced photo- catalytic activity of doped TiO2 (A/R) was observed; under the optimized synthesis conditions, CH4 generation rate of doped TiO2 (A/R) was 2.3 times that of Ti3+-doped rutile TiO2. 展开更多
关键词 Ti3+-doped TiO2 photocatalytic co2 conversion visible light irradiation
原文传递
Prolonged lifetime and enhanced separation of photo- generated charges of nanosized α-Fe2O3 by coupling SnO2 for efficient visible-light photocatalysis to convert C02 and degrade acetaldehyde 被引量:2
10
作者 Zhijun Li Peng Luan +4 位作者 Xuliang Zhang Yang Qu Fazal Raziq Jinshuang Wang Liqiang Jing 《Nano Research》 SCIE EI CAS CSCD 2017年第7期2321-2331,共11页
To develop efficient visible-light photocatalysis on α-Fe2O3, it is highly desirable to promote visible-light-excited high-energy-level electron transfer to a proper energy platform thermodynamically. Herein, based o... To develop efficient visible-light photocatalysis on α-Fe2O3, it is highly desirable to promote visible-light-excited high-energy-level electron transfer to a proper energy platform thermodynamically. Herein, based on the transient-state surface photovoltage responses and the atmosphere-controlled steady-state surface photovoltage spectra, it is demonstrated that the lifetime and separation of photogenerated charges of nanosized α-Fe2O3 are increased after coupling a proper amount of nanocrystalline SnO2. This naturally leads to greatly improved photocatalytic activities for CO2 reduction and acetaldehyde degradation. It is suggested that the enhanced charge separation results from the electron transfer from α-Fe2O3 to SnO2, which acts as a proper energy platform. Based on the photocurrent action spectra, it is confirmed that the coupled SnO2 exhibits longer visible-light threshold wavelength (-590 nm) compared with the coupled TiO2 (-550 nm), indicating that the energy platform introduced by SnO2 would accept more photogenerated electrons from α-Fe2O3. Moreover, electrochemical reduction experiments proved that the coupled SnO2 possesses better catalytic ability for reducing CO2 and O2. These are well responsible for the much efficient photocatalysis on SnO2-coupled α-Fe2O3. 展开更多
关键词 SnO2-Fe2O3 nanocomposite electron transfer visible-light photocatalysis co2 conversion acetaldehyde degradation
原文传递
A review on metal-organic frameworks for photoelectrocatalytic applications
11
作者 Feihu Mu Benlin Dai +3 位作者 Wei Zhao Lili Zhang Jiming Xu Xujing Guo 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第7期1773-1781,共9页
Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage.Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias... Semiconductor-based photoelectrocatalytic processes have attracted considerable research interest for solar energy collection and storage.Photoelectrocatalysis is a heterogeneous photocatalytic process in which a bias potential is applied to a photoelectrode,and thus the photoelectrocatalytic performance is closely related to the photoelectrode prepared by semiconductors.Among various semiconductors,metal-organic frameworks(MOFs)have attracted more and more attention because of their unique properties such as optical properties and adjustable structure.Herein,a comprehensive review on different MOFs(Ti-based,Zn-based,Co-based,Fe-based,Cu-based,and mixed metal-based MOFs)for heterogeneous photoelectrocatalysis is carried out and,in particular,the application of this technique for CO2 conversion and water splitting is discussed.In addition,the challenges and development prospects of MOFs in photoelectrocatalysis are also presented. 展开更多
关键词 MOFS PHOTOELECTROCATALYSIS PHOTOELECTRODE co2 conversion Water splitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部