期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic Responses of Atmospheric Carbon Dioxide Concentration to Global Temperature Changes between 1850 and 2010
1
作者 Weile WANG Ramakrishna NEMANI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2016年第2期247-258,共12页
Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we sho... Changes in Earth's temperature have significant impacts on the global carbon cycle that vary at different time scales, yet to quantify such impacts with a simple scheme is traditionally deemed difficult. Here, we show that, by incorporating a tem- perature sensitivity parameter (1.64 ppm yr-1 ℃-1) into a simple linear carbon-cycle model, we can accurately characterize the dynamic responses of atmospheric carbon dioxide (CO2) concentration to anthropogenic carbon emissions and global temperature changes between 1850 and 2010 (r2 〉 0.96 and the root-mean-square error 〈 1 ppm for the period from 1960 onward). Analytical analysis also indicates that the multiplication of the parameter with the response time of the atmospheric carbon reservoir (-12 year) approximates the long-term temperature sensitivity of global atmospheric CO2 concentration (-15 ppm ℃ 1), generally consistent with previous estimates based on reconstructed CO2 and climate records over the Little Ice Age. Our results suggest that recent increases in global surface temperatures, which accelerate the release of carbon from the surface reservoirs into the atmosphere, have partially offset surface carbon uptakes enhanced by the elevated atmo- spheric CO2 concentration and slowed the net rate of atmospheric CO2 sequestration by global land and oceans by -30% since the 1960s. The linear modeling framework outlined in this paper thus provides a useful tool to diagnose the observed atmospheric CO2 dynamics and monitor their future changes. 展开更多
关键词 atmospheric co2 dynamics climate-carbon interactions climate change carbon cycle
下载PDF
Adsorption of carbon dioxide on amine-modified TiO_2 nanotubes 被引量:4
2
作者 Fujiao Song Yunxia Zhao Qin Zhong 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第3期554-560,共7页
TiO2 nanotubes (TiNT) were prepared by a hydrothermal treatment and modified by three kinds of amines,namely ethylenediamine,polyetherimide and tetraethylenepentamine (TEPA),to study their CO2 adsorption propertie... TiO2 nanotubes (TiNT) were prepared by a hydrothermal treatment and modified by three kinds of amines,namely ethylenediamine,polyetherimide and tetraethylenepentamine (TEPA),to study their CO2 adsorption properties from gas streams.The resultant samples were characterized by X-ray diffraction,transmission electron microscopy,and infrared spectroscopy,as well as low temperature N 2 adsorption.CO2 capture was investigated in a dynamic packed column at 30℃.TEPA-modified TiO2 nanotubes showed the highest adsorption capacity of 167.64 mg/g because it had the highest amino-group content among the three amines.CO2 fixation on TiNT impregnated by TEPA was investigated at 30,50,and 70℃,and the adsorption capacity increased slightly with temperature.Following the adsorption step,the sorbents were regenerated by temperature programmed desorption,and the TiNT-TEPA sample,as CO2 sorbent,was found to be readily regenerated and energy-efficient.The cycle test also revealed that the TiNT-TEPA adsorbent is fairly stable,with only a 5% drop in the adsorption capacity after 10 adsorption/desorption cycles.In addition,the CO2 adsorption behavior was investigated with the deactivation model,and which showed an excellent prediction for the TiNT-TEPA breakthrough curves. 展开更多
关键词 co2 capture TiO2 nanotubes amine-modified dynamic adsorption deactivation model
原文传递
Breakthrough CO_2 adsorption in bio-based activated carbons 被引量:2
3
作者 Sepideh Shahkarami Ramin Azargohar +1 位作者 Ajay K.Dalai Jafar Soltan 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第8期68-76,共9页
In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, us... In this work, the effects of different methods of activation on CO2 adsorption performance of activated carbon were studied. Activated carbons were prepared from biochar, obtained from fast pyrolysis of white wood, using three different activation methods of steam activation, CO2 activation and Potassium hydroxide(KOH) activation. CO2 adsorption behavior of the produced activated carbons was studied in a fixed-bed reactor set-up at atmospheric pressure, temperature range of 25–65°C and inlet CO2 concentration range of10–30 mol% in He to determine the effects of the surface area, porosity and surface chemistry on adsorption capacity of the samples. Characterization of the micropore and mesopore texture was carried out using N2 and CO2 adsorption at 77 and 273 K, respectively.Central composite design was used to evaluate the combined effects of temperature and concentration of CO2 on the adsorption behavior of the adsorbents. The KOH activated carbon with a total micropore volume of 0.62 cm3/g and surface area of 1400 m2/g had the highest CO2 adsorption capacity of 1.8 mol/kg due to its microporous structure and high surface area under the optimized experimental conditions of 30 mol% CO2 and 25°C. The performance of the adsorbents in multi-cyclic adsorption process was also assessed and the adsorption capacity of KOH and CO2 activated carbons remained remarkably stable after50 cycles with low temperature(160°C) regeneration. 展开更多
关键词 Biochar Activated carbon Dynamic co2adsorption Micropore Surface area
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部