To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are u...To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.展开更多
Seeds of japonica rice (cv. Zhenuo 2) at twodifferent physiological states (dry seeds withwater content 13% and wet seeds soaked inthe water for 36 h) were irradiated by COlaser in four different power-densities. Thes...Seeds of japonica rice (cv. Zhenuo 2) at twodifferent physiological states (dry seeds withwater content 13% and wet seeds soaked inthe water for 36 h) were irradiated by COlaser in four different power-densities. Theseeds irradiated by 200GY ofCo γ rays andno radiated seeds were used as the controls.Results showed that the biological effects展开更多
Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve b...Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.展开更多
基金supported by the National High Technology Research and Development Program of China (Grant No. 2008AA8040508)the Foundation for Young Scholars of University of Electronic Science and Technology of China (Grant No. L08010401JX0806)
文摘To understand the surface morphology evolution of fused silica induced by 10.6μm CO2 laser irradiation at different parameters, this paper reports that optical microscopy, profilometry, and hydrophilicity tests are utilized to characterize the surface structure and roughness of the laser irradiated area. The results show that three typical surface morphologies and two typical hydrophilicity test images are observed at different laser powers and pulse durations. The correlations between surface temperature and surface morphology as well as hydrophilicity behaviours are presented. The different hydrophilicity behaviours are related to surface structures of the laser-induced crater and thermal diffusion area. The thermal diffusion length monotonously increases with increasing laser power and pulse duration. The crater width is almost determined by the laser beam size. The crater depth is more sensitive to the laser power and pulse duration than the crater width.
文摘Seeds of japonica rice (cv. Zhenuo 2) at twodifferent physiological states (dry seeds withwater content 13% and wet seeds soaked inthe water for 36 h) were irradiated by COlaser in four different power-densities. Theseeds irradiated by 200GY ofCo γ rays andno radiated seeds were used as the controls.Results showed that the biological effects
文摘Beam uniformity is a crucial building block of CO2 experiments aimed at fusing and stretching optical fibers in a lossless manner. When the irradiation beam is expanded through a galvanometer mirror, ways to achieve beam uniformity are investigated.