The paper describes a method for monitoring CO2 leakage in geological carbon dioxide sequestration. A real time monitoring parameter, apparent leakage flux(ALF), is presented to monitor abnormal CO2 leakage, which can...The paper describes a method for monitoring CO2 leakage in geological carbon dioxide sequestration. A real time monitoring parameter, apparent leakage flux(ALF), is presented to monitor abnormal CO2 leakage, which can be calculated by atmospheric CO2 and O2 data. The computation shows that all ALF values are close to zero-line without the leakage. With a step change or linear perturbation of concentration to the initial CO2 concentration data with no leakage, ALF will deviate from background line. Perturbation tests prove that ALF method is sensitive to linear perturbation but insensitive to step change of concentration. An improved method is proposed based on real time analysis of surplus CO2 concentration in least square regression process, called apparent leakage flux from surplus analysis(ALFs), which is sensitive to both step perturbation and linear perturbations of concentration. ALF is capable of detecting concentration increase when the leakage occurs while ALFs is useful in all periods of leakage. Both ALF and ALFs are potential approaches to monitor CO2 leakage in geosequestration project.展开更多
基金Supported by the National Natural Science Foundation of China(51276141,20936004)
文摘The paper describes a method for monitoring CO2 leakage in geological carbon dioxide sequestration. A real time monitoring parameter, apparent leakage flux(ALF), is presented to monitor abnormal CO2 leakage, which can be calculated by atmospheric CO2 and O2 data. The computation shows that all ALF values are close to zero-line without the leakage. With a step change or linear perturbation of concentration to the initial CO2 concentration data with no leakage, ALF will deviate from background line. Perturbation tests prove that ALF method is sensitive to linear perturbation but insensitive to step change of concentration. An improved method is proposed based on real time analysis of surplus CO2 concentration in least square regression process, called apparent leakage flux from surplus analysis(ALFs), which is sensitive to both step perturbation and linear perturbations of concentration. ALF is capable of detecting concentration increase when the leakage occurs while ALFs is useful in all periods of leakage. Both ALF and ALFs are potential approaches to monitor CO2 leakage in geosequestration project.