Under the Paris agreement, China has committed to reducing CO_2 emissions by 60%–65% per unit of GDP by 2030.Since CO_2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissi...Under the Paris agreement, China has committed to reducing CO_2 emissions by 60%–65% per unit of GDP by 2030.Since CO_2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissions in China, it will be necessary to mitigate at least some of these emissions to achieve this goal. Studies by the International Energy Agency(IEA) indicate CCS technology has the potential to contribute 14% of global emission reductions, followed by 40% of higher energy efficiency and 35% of renewable energy, which is considered as the most promising technology to significantly reduce carbon emissions for current coal-fired power plants.Moreover, the announcement of a Chinese national carbon trading market in late 2017 signals an opportunity for the commercial deployment of CO_2 capture technologies.Currently, the only commercially demonstrated technology for post-combustion CO_2 capture technology from power plants is solvent-based absorption. While commercially viable, the costs of deploying this technology are high. This has motivated efforts to develop more affordable alternatives, including advanced solvents, membranes,and sorbent capture systems. Of these approaches, advanced solvents have received the most attention in terms of research and demonstration. In contrast, sorbent capture technology has less attention, despite its potential for much lower energy consumption due to the absence of water in the sorbent. This paper reviews recent progress in the development of sorbent materials modified by amine functionalities with an emphasis on material characterization methods and the effects of operating conditions on performance. The main problems and challenges that need to be overcome to improve the competitiveness of sorbent-based capture technologies are discussed.展开更多
The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the foll...The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the COsorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher COsorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest COsorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiOparticles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for COand the stronger temperature dependence of COcapacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the COsorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG.展开更多
A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol wa...A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0. 38 g/g and 0. 70 after 50 cycles, which are 1.8 and 2. 1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.展开更多
CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In ...CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.展开更多
By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candi...By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of allowing identification of thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and the available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, which obtained either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycles. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and are further considered for ex- perimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate work- ing temperatures. In addition to introducing our computational screening procedure, in this presentation we will sum- marize our results for solid systems composed by alkali and alkaline earth metal oxides, hydroxides, and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O with SiO2/ZrO2 with different mixing ratios, our preliminary results showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. Overall these theoretical predictions are found to be in good agreement with available experimental findings.展开更多
In this paper, study on the effect of preparation conditions of K2CO3/Al2O3 sorbent was done. Box-Behnken design was applied to study the influence of four parameters involve initial solution concentration, impregnati...In this paper, study on the effect of preparation conditions of K2CO3/Al2O3 sorbent was done. Box-Behnken design was applied to study the influence of four parameters involve initial solution concentration, impregnation time and calcination step temperature and time. A quadratic model was used to correlate the sorbent capture capacity. The model was used to calculate the optimum conditions for preparing sorbent. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The potassium-based sorbents used in this study were prepared by impregnating K2CO3 on Al2O3 support. The CO2 capture capacity was measured in the presence of H2O in a fixed-bed reactor at CO2 capture temperature of 60°C using breakthrough curves. The optimum sorbent prepared by this method showed CO2 capture capacity of 77.21 mg CO2/g sorbent. It was observed that the experimental values obtained were in good agreement with the values predicted by the model, with relatively small errors between the predicted and the actual values. The results obtained in this study can be used as basic data for study on design and operating condition optimization of CO2 capture process using these sorbents.展开更多
Supported ionic liquid(IL) sorbents for CO_2 capture were prepared by impregnating tetramethylammonium glycinate([N1111][Gly]) into four types of porous materials in this study. The CO_2 adsorption behavior was invest...Supported ionic liquid(IL) sorbents for CO_2 capture were prepared by impregnating tetramethylammonium glycinate([N1111][Gly]) into four types of porous materials in this study. The CO_2 adsorption behavior was investigated in a thermogravimetric analyzer(TGA). Among them, poly(methyl methacrylate)(PMMA)-[N1111][Gly]exhibits the best CO_2 adsorption properties in terms of adsorption capacity and rate. The CO_2 adsorption capacity reaches up to 2.14 mmol·g-1 sorbent at 35 °C. The fast CO_2 adsorption rate of PMMA-[N1111][Gly] allows 60 min of adsorption equilibrium time at 35 °C and much shorter time of 4 min is achieved at 75 °C. Further, Avrami's fractional-order kinetic model was used and fitted well with the experiment data, which shows good consistency between experimental results and theoretical model. In addition, PMMA-[N1111][Gly] remained excellent durability in the continuous adsorption–desorption cycling test. Therefore, this stable PMMA-[N1111][Gly] sorbent has great potential to be used for fast CO_2 adsorption from flue-gas.展开更多
The carbonation characteristics of K2CO3/Al2O3 supported sorbent for CO2 capture was investigated with thermogravimetric apparatus(TGA),X-ray diffraction(XRD),scanning electron microscopy analysis(SEM)and N2 adsorptio...The carbonation characteristics of K2CO3/Al2O3 supported sorbent for CO2 capture was investigated with thermogravimetric apparatus(TGA),X-ray diffraction(XRD),scanning electron microscopy analysis(SEM)and N2 adsorption.The results showed that the carbonation rate of K2CO3 before being loaded on Al2O3 was slow.However,the K2CO3/Al2O3supported sorbent showed excellent carbonation performance.The difference in carbonation behavior between K2CO3and K2CO3/Al2O3supported sorbent was analyzed from the microscopic view.The analytical reagent K2CO3 sample was of monoclinic crystal structure and could react quickly with H2O in the experimental carbonation environment to produce K2CO3·1.5H2O,which was unfavorable to carbonation reaction.When K2CO3was loaded on Al2O3,the surface area and porosity of the sorbent was improved greatly.So the carbonation properties of the K2CO3/Al2O3 supported sorbent was also improved.展开更多
基金Supported by the National Key Research and Development Program of China(2017YFB0603301)
文摘Under the Paris agreement, China has committed to reducing CO_2 emissions by 60%–65% per unit of GDP by 2030.Since CO_2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissions in China, it will be necessary to mitigate at least some of these emissions to achieve this goal. Studies by the International Energy Agency(IEA) indicate CCS technology has the potential to contribute 14% of global emission reductions, followed by 40% of higher energy efficiency and 35% of renewable energy, which is considered as the most promising technology to significantly reduce carbon emissions for current coal-fired power plants.Moreover, the announcement of a Chinese national carbon trading market in late 2017 signals an opportunity for the commercial deployment of CO_2 capture technologies.Currently, the only commercially demonstrated technology for post-combustion CO_2 capture technology from power plants is solvent-based absorption. While commercially viable, the costs of deploying this technology are high. This has motivated efforts to develop more affordable alternatives, including advanced solvents, membranes,and sorbent capture systems. Of these approaches, advanced solvents have received the most attention in terms of research and demonstration. In contrast, sorbent capture technology has less attention, despite its potential for much lower energy consumption due to the absence of water in the sorbent. This paper reviews recent progress in the development of sorbent materials modified by amine functionalities with an emphasis on material characterization methods and the effects of operating conditions on performance. The main problems and challenges that need to be overcome to improve the competitiveness of sorbent-based capture technologies are discussed.
基金the support of this work at Penn State by the U.S.Department of Energy,National Energy Technology Laboratorythe financial support by the China Scholarship Council,the Natural Science Foundation of China(No.51176034)the Open Fund of Key Laboratory of Coal-Based CO2 Capture and Geological Storage of Jiangsu Province(2016A05)
文摘The objective of this work is to study the influences of silica supports and PEG additive on the sorption performance of molecular basket sorbent(MBS) for COcapture consisting of polyethylenimine and one of the following supports: SBA-15(2-D structure), TUD-1(3-D sponge-like structure) and fumed silica HS-5(3-D disordered structure). Effects of the supports regarding pore structures and pore properties, the PEI loading amount as well as the sorption temperature were examined. Furthermore, polyethylene glycol(PEG) was introduced as an additive into the sorbents and its effect was investigated at different PEI loadings and sorption temperatures. The results suggest that the pore properties of MBS(after PEI loading) play a more important role in the COsorption capacity, rather than those of the supports alone.MBS with 3D pore structure exhibits higher COsorption capacity and amine efficiency than those with 2D-structured support. Among the sorbents studied, fumed silica(HS-5) based MBS showed the highest COsorption capacity in the temperature range of 30-95 °C, probably due to its unique interstitial pores formed by the aggregation of polymer-loaded SiOparticles. It was found that the temperature dependence is directly related to the PEI surface coverage layers. The more PEI surface coverage layers, the higher diffusion barrier for COand the stronger temperature dependence of COcapacity. 3D MBS exceeds 2D MBS at the same PEI coverage layers due to lower diffusion barrier. Adding PEG can significantly enhance the COsorption capacity and improve amine efficiency of all MBS, most likely by alleviating the diffusion barrier within PEI bulk layers through the inter-molecular interaction between PEI and PEG.
基金The National Natural Science Foundation of China(No.51376003)
文摘A kind of industrial solid waste, i.e., carbide slag, was used as CaO precursor to synthesize CO2 sorbent. The highly reactive synthetic sorbent was prepared from carbide slag, aluminum nitrate hydrate and glycerol water solution by the combustion synthesis method. The results show that the synthetic sorbent exhibits a much higher CO2 capture capacity compared with carbide slag. The CO2 capture capacity and the carbonation conversion of the synthetic sorbent are 0. 38 g/g and 0. 70 after 50 cycles, which are 1.8 and 2. 1 times those of carbide slag. The average carbonation conversion and the CO2 capture efficiency of the synthetic sorbent are higher than those of carbide slag with the same sorbent flow ratios. The required sorbent flow ratios are lower for synthetic sorbent to achieve the same CO2 capture efficiency compared with carbide slag. With the same sorbent flow ratio and CO2 capture efficiency, the energy requirement in calciner for the synthetic sorbent is less than that for carbide slag.
基金Supported by Capture CO_2 and Storage Technology Jointly Studied by USA and China(2013DFB60140-04)Northwest University Graduate Innovative Talent Training Project(YZZ12036)
文摘CaO-based sorbent is considered to be a promising candidate for capturing CO_2 at high temperature. However,the adsorption capacity of CaO decreases sharply with the increase of the carbonation/calcination cycles. In this study, CaO was derived from calcium acetate(CaAc_2), which was doped with different elements(Mg, Al,Ce, Zr and La) to improve the cyclic stability. The carbonation conversion and cyclic stability of sorbents were tested by thermogravimetric analyzer(TGA). The sorbents were characterized by N_2 isothermal adsorption measurements, scanning electron microscopy(SEM) and X-ray diffraction(XRD). The results showed that the cyclic stabilities of all modified sorbents were improved by doping elements, while the carbonation conversions of sorbents in the 1st cycle were not increased by doping different elements. After 22 cycles, the cyclic stabilities of CaO–Al, CaO–Ce and CaO–La were above 96.2%. After 110 cycles, the cyclic stability of CaO–Al was still as high as 87.1%. Furthermore, the carbonation conversion was closely related to the critical time and specific surface area.
文摘By combining thermodynamic database mining with first principles density functional theory and phonon lattice dynamics calculations, a theoretical screening methodology to identify the most promising CO2 sorbent candidates from the vast array of possible solid materials has been proposed and validated. The ab initio thermodynamic technique has the advantage of allowing identification of thermodynamic properties of CO2 capture reactions without any experimental input beyond crystallographic structural information of the solid phases involved. For a given solid, the first step is to attempt to extract thermodynamic properties from thermodynamic databases and the available literatures. If the thermodynamic properties of the compound of interest are unknown, an ab initio thermodynamic approach is used to calculate them. These properties expressed conveniently as chemical potentials and heat of reactions, which obtained either from databases or from calculations, are further used for computing the thermodynamic reaction equilibrium properties of the CO2 absorption/desorption cycles. Only those solid materials for which lower capture energy costs are predicted at the desired process conditions are selected as CO2 sorbent candidates and are further considered for ex- perimental validations. Solid sorbents containing alkali and alkaline earth metals have been reported in several previous studies to be good candidates for CO2 sorbent applications due to their high CO2 absorption capacity at moderate work- ing temperatures. In addition to introducing our computational screening procedure, in this presentation we will sum- marize our results for solid systems composed by alkali and alkaline earth metal oxides, hydroxides, and carbonates/bicarbonates to validate our methodology. Additionally, applications of our computational method to mixed solid systems of Li2O with SiO2/ZrO2 with different mixing ratios, our preliminary results showed that increasing the Li2O/SiO2 ratio in lithium silicates increases their corresponding turnover temperatures for CO2 capture reactions. Overall these theoretical predictions are found to be in good agreement with available experimental findings.
文摘In this paper, study on the effect of preparation conditions of K2CO3/Al2O3 sorbent was done. Box-Behnken design was applied to study the influence of four parameters involve initial solution concentration, impregnation time and calcination step temperature and time. A quadratic model was used to correlate the sorbent capture capacity. The model was used to calculate the optimum conditions for preparing sorbent. From the analysis of variance (ANOVA), the most influential factor on each experimental design response was identified. The potassium-based sorbents used in this study were prepared by impregnating K2CO3 on Al2O3 support. The CO2 capture capacity was measured in the presence of H2O in a fixed-bed reactor at CO2 capture temperature of 60°C using breakthrough curves. The optimum sorbent prepared by this method showed CO2 capture capacity of 77.21 mg CO2/g sorbent. It was observed that the experimental values obtained were in good agreement with the values predicted by the model, with relatively small errors between the predicted and the actual values. The results obtained in this study can be used as basic data for study on design and operating condition optimization of CO2 capture process using these sorbents.
基金Supported by the National Basic Research Program of China(2013CB733503)the National Natural Science Foundation of China(21136001,21136004,21476106,21428601,21776123)the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions(TAPP)and the Jiangsu Natural Science Foundation(BK20130062)
文摘Supported ionic liquid(IL) sorbents for CO_2 capture were prepared by impregnating tetramethylammonium glycinate([N1111][Gly]) into four types of porous materials in this study. The CO_2 adsorption behavior was investigated in a thermogravimetric analyzer(TGA). Among them, poly(methyl methacrylate)(PMMA)-[N1111][Gly]exhibits the best CO_2 adsorption properties in terms of adsorption capacity and rate. The CO_2 adsorption capacity reaches up to 2.14 mmol·g-1 sorbent at 35 °C. The fast CO_2 adsorption rate of PMMA-[N1111][Gly] allows 60 min of adsorption equilibrium time at 35 °C and much shorter time of 4 min is achieved at 75 °C. Further, Avrami's fractional-order kinetic model was used and fitted well with the experiment data, which shows good consistency between experimental results and theoretical model. In addition, PMMA-[N1111][Gly] remained excellent durability in the continuous adsorption–desorption cycling test. Therefore, this stable PMMA-[N1111][Gly] sorbent has great potential to be used for fast CO_2 adsorption from flue-gas.
文摘The carbonation characteristics of K2CO3/Al2O3 supported sorbent for CO2 capture was investigated with thermogravimetric apparatus(TGA),X-ray diffraction(XRD),scanning electron microscopy analysis(SEM)and N2 adsorption.The results showed that the carbonation rate of K2CO3 before being loaded on Al2O3 was slow.However,the K2CO3/Al2O3supported sorbent showed excellent carbonation performance.The difference in carbonation behavior between K2CO3and K2CO3/Al2O3supported sorbent was analyzed from the microscopic view.The analytical reagent K2CO3 sample was of monoclinic crystal structure and could react quickly with H2O in the experimental carbonation environment to produce K2CO3·1.5H2O,which was unfavorable to carbonation reaction.When K2CO3was loaded on Al2O3,the surface area and porosity of the sorbent was improved greatly.So the carbonation properties of the K2CO3/Al2O3 supported sorbent was also improved.