Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was deve...Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.展开更多
Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of ...Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metal-organic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,Brunauer-Emmett-Teller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer﹦3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.展开更多
Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,includi...Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,including non-toxicity,structural stability,easy availability,and suitable band gap.We introduced the types of ZISbased nanomaterials and their action mechanism in photocatalytic CO_(2) reduction.Moreover,we put forward prospects in the future development directions of ZIS-based nanomaterials for photocatalytic CO_(2) reduction.展开更多
In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane a...In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO, CHand Nthrough the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, COpermeability, ideal CO/CHand CO/Nselectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.展开更多
Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N...Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.展开更多
基金Supported by the National Research Council of Science&Technology(NST)grant by the Korea government(MSIP)(No.CRC-15-07-KIER)
文摘Carbon dioxide(CO_2) is greenhouse gas which originates primarily as a main combustion product of biogas and landfill gas. To separate this gas, an inside coated thin film composite(TFC) hollow fiber membrane was developed by interfacial polymerization between 1,3–cyclohexanebis–methylamine(CHMA) and trimesoyl chloride(TMC). ATR-FTIR, SEM and AFM were used to characterize the active thin layer formed inside the PSf hollow fiber. The separation behavior of the CHMA-TMC/PSf membrane was scrutinized by studying various effects like feed gas pressure and temperature. Furthermore, the influence of CHMA concentration and TMC concentration on membrane morphology and performance were investigated. As a result, it was found that mutually the CHMA concentration and TMC concentration play key roles in determining membrane morphology and performance. Moreover, the CHMA-TMC/PSf composite membrane showed good CO_2/CH_4 separation performance. For CO_2/CH_4 mixture gas(30/70 by volume) test, the membrane(PD1 prepared by CHMA 1.0% and TMC 0.5%) showed a CO_2 permeance of 25 GPU and the best CO_2/CH_4 selectivity of 28 at stage cut of 0.1. The high CO_2/CH_4 separation performance of CHMA-TMC/PSf thin film composite membrane was mostly accredited to the thin film thickness and the properties of binary amino groups.
基金financial support from the National Natural Science Foundation of China(52174229 and 52174230)the Natural Science Foundation of Liaoning Province(2022-KF-13-05)+1 种基金Fushun Revitalization Talents Program(FSYC202107010)the program funded by Liaoning Province Education Administration(LJKZ0411).
文摘Efficiently enriching low-concentration CH4 is pivotal for enhancing the utilization of unconventional energy sources and mitigating greenhouse gas emissions.This study focuses on modifying the overall performance of CH_(4)/N_(2)separation membranes.A novel mixed matrix membrane(MMM)with a reinforced substrate structure was developed through a straightforward dip-coating technique.This MMM incorporates a polytetrafluoroethylene(PTFE)porous membrane as the supporting framework,while a composite of block polymer(styrene-butadiene-styrene)and metal-organic framework(Ni-MOF-74)forms the selective separation layer.Comprehensive characterization of Ni-MOF-74 and the fabricatedmembranes was conducted using X-rays diffraction,scanning electron microscope,Brunauer-Emmett-Teller analysis,and gas permeance tests.The findings indicate a robust integration of the PTFE porous support with the membrane layer,enhancing the mechanical stability of theMMM.Under optimal conditions,the mechanical strength of the PM20 membrane(containing 20%Ni-MOF-74)was observed to be 37.7 MPa,representing remarkable increase compared to the non-reinforcedMMM.Additionally,thePM20membrane exhibited an impressive CH4 permeation rate of 92 barrer(1 barrer﹦3.35×10^(-16)mol·m·m^(-2)·s^(-1)·Pa^(-1))alongside a CH_(4)/N_(2)selectivity of 4.18.These results underscore the MMM's substantial performance and its promising potential in methane enrichment applications.
文摘Zinc indium sulfide(ZnIn_(2)S_(4),ZIS),a novel photocatalyst with layered nanostructure,has drawn significant attention in the field of photocatalytic CO_(2) reduction in recent years due to various advantages,including non-toxicity,structural stability,easy availability,and suitable band gap.We introduced the types of ZISbased nanomaterials and their action mechanism in photocatalytic CO_(2) reduction.Moreover,we put forward prospects in the future development directions of ZIS-based nanomaterials for photocatalytic CO_(2) reduction.
文摘In this investigation, polymeric nanocomposite membranes(PNMs) were prepared via incorporating zinc oxide(ZnO) into poly(ether-block-amide)(PEBAX-1074) polymer matrix with different loadings. The neat membrane and nanocomposite membranes were prepared via solution casting and solution blending methods, respectively. The fabricated membranes were characterized by field emission scanning electron microscopy(FESEM) to survey cross-sectional morphologies and thermal gravimetric analysis(TGA)to study thermal stability. Fourier transform infrared(FT-IR) and X-ray diffraction(XRD) analyses were also employed to identify variations of the chemical bonds and crystal structure of the membranes, respectively. Permeation of pure gases, CO, CHand Nthrough the prepared neat and nanocomposite membranes was studied at pressures of 3–18 bar and temperature of 25 °C. The obtained results showed that the fabricated nanocomposite membranes exhibit better separation performance compared to the neat PEBAX membrane in terms of both permeability and selectivity. As an example, at temperature of 25 °C and pressure of 3 bar, COpermeability, ideal CO/CHand CO/Nselectivity values for the neat PEBAX membrane are 110.67 Barrer, 11.09 and 50.08, respectively, while those values are 152.27 Barrer,13.52 and 62.15 for PEBAX/ZnO nanocomposite membrane containing 8 wt% ZnO.
基金financial support from the National Natural Science Foundation of China (Nos. 51672186, 21676175)
文摘Samples of methane molecules grade diameter channel CHA-type molecular sieves(Chabazite-K, SAPO-34 and SSZ-13) were investigated using the adsorption separation of CH4/N2 mixtures. The isotherms recorded for CH4 and N2 follow a typical type-Ι behavior, which were fitted well with the Sips model(R2>0.999) and the selectivity was calculated using IAST theory. The results reveal that Chabazite-K has the highest selectivity(SCH4/N= 5.5).2 SSZ-13 has the largest capacity, which can adsorb up to a maximum of 30.957 cm3·g-1(STP) of CH4, due to it having the largest pore volume and surface area, but the lowest selectivity(SCH4/N2= 2.5). From the breakthrough test, we can conclude that SSZ-13 may be a suitable candidate for the recovery of CH4 from low concentration methane(CH4<20%) based on its larger pore volume and higher CH4 capacity. Chabazite-K is more suited to the separation of high concentration methane(CH4>50%) due to its higher selectivity.