In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is pres...In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.展开更多
Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by exp...Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by expectations of stochastic functions. The method is proved to be convergent and the preliminary numerical results are reported.展开更多
In thispaper,theexistence oftravelling frontsolution fora classofcom petition-diffu- sion system w ith high-order singular point w it = diw ixx - w αii fi(w ),x ∈R,t> 0,i= 1,2 (Ⅰ) is studied,w here di,αi>...In thispaper,theexistence oftravelling frontsolution fora classofcom petition-diffu- sion system w ith high-order singular point w it = diw ixx - w αii fi(w ),x ∈R,t> 0,i= 1,2 (Ⅰ) is studied,w here di,αi> 0 (i= 1,2) and w = (w 1(x,t),w 2(x,t)).Under the certain assum ptions on f,itis show ed thatifαi< 1 for som e i,then (Ⅰ) has no travelling frontsolution,ifαi≥1 for i= 1,2,then there isa c0,c:c0≥c> 0,w herecis called the m inim alwavespeed of(Ⅰ),such thatifc≥c0 orc= c,then (Ⅰ) has a travelling frontsolution,ifc< c,then (Ⅰ) hasno travel- ling frontsolution by using the shooting m ethod in com bination w ith a com pactness argum ent.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11171208)the Shanghai Leading Academic Discipline Project,China(Grant No.S30106)the Innovation Fund for Graduate Student of Shanghai University of China (Grant No.SHUCX120125)
文摘In this paper, based on the improved complex variable moving least-square (ICVMLS) approximation, a new complex variable meshless method (CVMM) for two-dimensional (2D) transient heat conduction problems is presented. The variational method is employed to obtain the discrete equations, and the essential boundary conditions are imposed by the penalty method. As the transient heat conduction problems are related to time, the Crank-Nicolson difference scheme for two-point boundary value problems is selected for the time discretization. Then the corresponding formulae of the CVMM for 2D heat conduction problems are obtained. In order to demonstrate the applicability of the proposed method, numerical examples are given to show the high convergence rate, good accuracy, and high efficiency of the CVMM presented in this paper.
文摘Utilizing the well-known aggregation technique, we propose a smoothing sample average approximation (SAA) method for a stochastic linear complementarity problem, where the underlying functions are represented by expectations of stochastic functions. The method is proved to be convergent and the preliminary numerical results are reported.
文摘In thispaper,theexistence oftravelling frontsolution fora classofcom petition-diffu- sion system w ith high-order singular point w it = diw ixx - w αii fi(w ),x ∈R,t> 0,i= 1,2 (Ⅰ) is studied,w here di,αi> 0 (i= 1,2) and w = (w 1(x,t),w 2(x,t)).Under the certain assum ptions on f,itis show ed thatifαi< 1 for som e i,then (Ⅰ) has no travelling frontsolution,ifαi≥1 for i= 1,2,then there isa c0,c:c0≥c> 0,w herecis called the m inim alwavespeed of(Ⅰ),such thatifc≥c0 orc= c,then (Ⅰ) has a travelling frontsolution,ifc< c,then (Ⅰ) hasno travel- ling frontsolution by using the shooting m ethod in com bination w ith a com pactness argum ent.