Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasin...Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasing reports of robotic-assisted bladder neck reconstruction in the literature.However,existing studies are small,heterogeneous case series.The objective of this study was to perform a systematic review of robotic-assisted bladder neck reconstruction to better evaluate patency and incontinence outcomes.Methods:We performed a systematic review of PubMed from first available date to May 2023 for all studies evaluating robotic-assisted reconstructive surgery of the bladder neck in adult men.Articles in non-English,author replies,editorials,pediatric-based studies,and reviews were excluded.Outcomes of interest were patency and incontinence rates,which were pooled when appropriate.Results:After identifying 158 articles on initial search,we included only ten studies that fit all aforementioned criteria for robotic-assisted bladder neck reconstruction.All were case series published from March 2018 to March 2022 ranging from six to 32 men,with the median follow-up of 5e23 months.A total of 119 patients were included in our analysis.A variety of etiologies and surgical techniques were described.Patency rates ranged from 50%to 100%,and pooled patency was 80%(95/119).De novo incontinence rates ranged from 0%to 33%,and pooled incontinence was 17%(8/47).Our findings were limited by small sample sizes,relatively short follow-ups,and heterogeneity between studies.展开更多
Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulat...Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.展开更多
The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8...The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).展开更多
This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)...This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.展开更多
The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affi...The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affirmed and transmitted to the public by a few Chinese scholars,including Feng Yingjing,Cheng Bai'er,Zhang Huang,Xiong Mingyu,Xiong Renlin,You Yi,Zhou Yuqi,Jie Xuan,Wang Honghan,and Ye Zipei.Most of them communicated closely with the Jesuit missionaries,and several even helped the missionaries compose the maps.The concept was updated progressively by Matteo Ricci,Giulio Aleni,Johann Adam Schall von Bell,Francesco Sambiasi,and Ferdinand Verbiest.Chinese scholars copied the missionaries'relevant maps and textual introductions without much modification.However,they paid little attention to advancements in the idea,and many of them circulated outdated knowledge.It was not until the middle-and late-nineteenth century that Chinese scholars reexamined the correctness of this hypothetical continent.展开更多
The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase d...The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented.展开更多
Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one qua...Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one quarter of Africa’s renewable power generation potential is utilized. Africa’s natural endowments are enormous, yet the continent experiences high energy shortage. Amongst the classifications of energy sources, renewable and green energy sources are increasingly gaining popularity due to their sustainable nature and environmental concerns. This paper explores the continent’s natural energy sources and identifies pathways to sustainable development. The paper also narrows the renewable and green energy sources obtainable on the continent and presents their contribution to the development of the continent. The awareness level of Africans towards renewable energy is discussed and the challenges of renewable and green energy sources are highlighted. Finally, the roles to be played by the government and private organizations in the development of renewable and green energy sources in Africa are discussed.展开更多
Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and h...Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58-1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K20 in China crust are in ranges of 0.83-1.76 μg/g, 3.16-6.69 μg/g, and 1.0%-2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.展开更多
The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature(P-T)conditions of(ul...The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature(P-T)conditions of(ultra) high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones(high-pressure metamorphic setting), and vertically by accumulation of mantle-derived magmas at the base of the crust(high-temperature metamorphic setting). Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions(brines). These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust.This accumulation causes tectonic instability, which together with the heat input from the subcontinental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.展开更多
The mantle unsteady flows, which are in an incompressible and isoviscous spherical shell, are investigated by using algorithms of the parallel Lagrange multiplier dissonant decomposition method (LMDDM) and the paralle...The mantle unsteady flows, which are in an incompressible and isoviscous spherical shell, are investigated by using algorithms of the parallel Lagrange multiplier dissonant decomposition method (LMDDM) and the parallel Lagrange multiplier discontinuous deformation analyses (LMDDA) in this paper. Some physical fields about mantle flows such as velocity, pressure, temperature, stress and the force to the crust of the Asian continent are calculated on a parallel computer.展开更多
Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, es...Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrusting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.展开更多
Worldwide comparison of lithospheric investigation results achieved from projects of COCORP, BIRPS, DEKORP, LITHOPROBE, ICDP, ECORS and SINOPROBE enables us to expand the classical Wilson cycle, which mainly describes...Worldwide comparison of lithospheric investigation results achieved from projects of COCORP, BIRPS, DEKORP, LITHOPROBE, ICDP, ECORS and SINOPROBE enables us to expand the classical Wilson cycle, which mainly describes evolution of ocean plates, into a complete and detailed cycle that describes generation, development and evolution of both ocean and continent plates. The expanded Wilson cycle presented in this paper introduces the evolution sequences of continental lithospheric processes by adding into the classical Wilson cycle with ocean-continent transition, continental collision and accretion, as well as continental rifting and splitting in details. These mentioned continental lithospheric processes have been presented by the author in a series of recent review papers in detail, and their summary and further deduction is presented in this paper.展开更多
The key technology of semi-continuous conveyor system decides the successful using of this system. The key technology includes optimal initial building depth of this system,the crusher moving step and the layout of co...The key technology of semi-continuous conveyor system decides the successful using of this system. The key technology includes optimal initial building depth of this system,the crusher moving step and the layout of conveyor system are studied, and their calculating models are built up.展开更多
We investigate the evolution of stress fields during the supercontinent cycle using the 2D Cartesian geometry model of thermochemical convection with the non-Newtonian rheology in the presence of floating deformable c...We investigate the evolution of stress fields during the supercontinent cycle using the 2D Cartesian geometry model of thermochemical convection with the non-Newtonian rheology in the presence of floating deformable continents.In the course of the simulation,the supercontinent cycle is implemented several times.The number of continents considered in our model as a function of time oscillates around 3.The lifetime of a supercontinent depends on its dimension.Our results suggest that immediately before a supercontinent breakup,the over-lithostatic horizontal stresses in it(referring to the mean value by the computational area)are tensile and can reach-250 MPa.At the same time,a vast area beneath a supercontinent with an upward flow exhibits clearly the over-lithostatic compressive horizontal stresses of 50-100 МРа.The reason for the difference in stresses in the supercontinent and the underlying mantle is a sharp difference in their viscosity.In large parts of the mantle,the over-lithostatic horizontal stresses are in the range of±25 MPa,while the horizontal stresses along subduction zones and continental margins are significantly larger.During the process of continent-to-continent collisions,the compressive stresses can approximately reach 130 MPa,while within the subcontinental mantle,the tensile over-lithostatic stresses are about-50 MPa.The dynamic topography reflects the main features of the su-percontinent cycle and correlates with real ones.Before the breakup and immediately after the disin-tegration of the supercontinent,continents experience maximum uplift.During the supercontinent cycle,topographic heights of continents typically vary within the interval of about±1.5 km,relatively to a mean value.Topographic maxima of orogenic formations to about 2-4 km are detected along continent-to-continent collisions as well as when adjacent subduction zones interact with continental margins.展开更多
Based on the comprehensive study of geology and geophysics in African continent,three types of lithosphere(craton-type,orogenic-type and rift-type)can be identified.Considering lithosphere discontinuities as the bound...Based on the comprehensive study of geology and geophysics in African continent,three types of lithosphere(craton-type,orogenic-type and rift-type)can be identified.Considering lithosphere discontinuities as the boundary,two first-order tectonic units(mainly cratonic-type in the west and rift-type in the east)are proposed.Different types of lithosphere can be divided into secondary-order and third-order structural units,and the blocks within lithosphere can be further divided into fourth-order structural units.The geological history,the formation process and significance of different types of lithosphere in African continent are briefly discussed.展开更多
Since the end of the Paleozoic, various crustobodies of the Asian continental lithosphere have successively undergone activation, resulting in the formation of widespread diwa-regime mobile belts. This is one of the i...Since the end of the Paleozoic, various crustobodies of the Asian continental lithosphere have successively undergone activation, resulting in the formation of widespread diwa-regime mobile belts. This is one of the important events in the evolution-movement history of the Asian continental lithosphere, occupies an important position in the problems of global tectonics and forms a frontier subject in modern geoscience. This paper, from an angle of crustobody geotectonics, discusses the following problems: formation time, distribution 1imits, types, development peculiarities and geotectonic significance of the diwa-regime tectonic element ; geochemical conditions of ore formation, principal mineral associations and ma jor deposit types in diwa structures of the Asian continent and their difference from those in other tectonic elements i and relationships between diwa-type metallogenesis and polygenetic compound and ultragiant ore deposits. Such a discussion can contribute to a better understanding of the tectonic types, distribution pattern and economic value of non-ferrous and rare meta1 endogenic ore deposits, peat, lignite and oil-gas fields.展开更多
文摘Objective:Bladder neck contracture and vesicourethral anastomotic stenosis are difficult to manage endoscopically,and open repair is associated with high rates of incontinence.In recent years,there have been increasing reports of robotic-assisted bladder neck reconstruction in the literature.However,existing studies are small,heterogeneous case series.The objective of this study was to perform a systematic review of robotic-assisted bladder neck reconstruction to better evaluate patency and incontinence outcomes.Methods:We performed a systematic review of PubMed from first available date to May 2023 for all studies evaluating robotic-assisted reconstructive surgery of the bladder neck in adult men.Articles in non-English,author replies,editorials,pediatric-based studies,and reviews were excluded.Outcomes of interest were patency and incontinence rates,which were pooled when appropriate.Results:After identifying 158 articles on initial search,we included only ten studies that fit all aforementioned criteria for robotic-assisted bladder neck reconstruction.All were case series published from March 2018 to March 2022 ranging from six to 32 men,with the median follow-up of 5e23 months.A total of 119 patients were included in our analysis.A variety of etiologies and surgical techniques were described.Patency rates ranged from 50%to 100%,and pooled patency was 80%(95/119).De novo incontinence rates ranged from 0%to 33%,and pooled incontinence was 17%(8/47).Our findings were limited by small sample sizes,relatively short follow-ups,and heterogeneity between studies.
文摘Around 71% of the Earth’s surface is covered by oceans with depths that exceed several kilometers, while continents are geographically enclosed by these vast bodies of water. The principle of fluid mechanics stipulates that water yields pressure everywhere in the container that holds it, and the water pressure against the wall of container generates force. Ocean basins are naturally gigantic containers of water, in which continents form the walls of the containers. In this study, we present that the ocean water pressure against the walls of continents generates enormous force, and determine the distribution of this force around continents and estimate its amplitude to be of the order of 1017 N per kilometer of continent width. Our modelling suggests that the stresses yielded by this force are mostly concentrated on the upper part of the continental crust, and their magnitudes reach up to 2.0 - 6.0 MPa. Our results suggest that the force may have significantly impacted the dynamics of continent (lithospheric plate) and its evolution.
文摘The USMTArray was completed on June 27,2024,comprising a network of 1779 transportable long-period magnetotelluric(MT)stations(Fig.1)with nominal 70-km grid spacing spanning the conterminous United States,an area of 8.1×10^(6)km^(2).Each station operated for weeksto-months,as required to meet data quality standards over the period band of 10–10000 s.The USMTArray shares similarities with the planned SinoProbe-II MT Array,with its 1-degree station spacing(~111 km in the latitudinal direction)spanning an area of 9.6×10^(6)km^(2).
基金supported by the National Natural Science Foundation of China(Grant No.41991283).
文摘This study investigates the dominant modes of interannual variability of snowfall frequency over the Eurasian continent during autumn and winter,and explores the underlying physical mechanisms.The first EOF mode(EOF1)of snowfall frequency during autumn is mainly characterized by positive anomalies over the Central Siberian Plateau(CSP)and Europe,with opposite anomalies over Central Asia(CA).EOF1 during winter is characterized by positive anomalies in Siberia and negative anomalies in Europe and East Asia(EA).During autumn,EOF1 is associated with the anomalous sea ice in the Kara–Laptev seas(KLS)and sea surface temperature(SST)over the North Atlantic.Increased sea ice in the KLS may cause an increase in the meridional air temperature gradient,resulting in increased synoptic-scale wave activity,thereby inducing increased snowfall frequency over Europe and the CSP.Anomalous increases of both sea ice in the KLS and SST in the North Atlantic may stimulate downstream propagation of Rossby waves and induce an anomalous high in CA corresponding to decreased snowfall frequency.In contrast,EOF1 is mainly affected by the anomalous atmospheric circulation during winter.In the positive phase of the North Atlantic Oscillation(NAO),an anomalous deep cold low(warm high)occurs over Siberia(Europe)leading to increased(decreased)snowfall frequency over Siberia(Europe).The synoptic-scale wave activity excited by the positive NAO can induce downstream Rossby wave propagation and contribute to an anomalous high and descending motion over EA,which may inhibit snowfall.The NAO in winter may be modulated by the Indian Ocean dipole and sea ice in the Barents-Kara-Laptev Seas in autumn.
文摘The idea of the hypothetical Magellanica Continent(Terra Australis Incognita)was introduced into China by the Jesuit missionaries during the seventeenth century.While not accepted by the Chinese government,it was affirmed and transmitted to the public by a few Chinese scholars,including Feng Yingjing,Cheng Bai'er,Zhang Huang,Xiong Mingyu,Xiong Renlin,You Yi,Zhou Yuqi,Jie Xuan,Wang Honghan,and Ye Zipei.Most of them communicated closely with the Jesuit missionaries,and several even helped the missionaries compose the maps.The concept was updated progressively by Matteo Ricci,Giulio Aleni,Johann Adam Schall von Bell,Francesco Sambiasi,and Ferdinand Verbiest.Chinese scholars copied the missionaries'relevant maps and textual introductions without much modification.However,they paid little attention to advancements in the idea,and many of them circulated outdated knowledge.It was not until the middle-and late-nineteenth century that Chinese scholars reexamined the correctness of this hypothetical continent.
基金Tata Steel Netherlands,Posco,Hyundai Steel,Nucor Steel,RioTinto,Nippon Steel Corp.,JFE Steel,Voestalpine,RHi-Magnesita,Doosan Enerbility,Seah Besteel,Umicore,Vesuvius and Schott AG are gratefully acknowledged.
文摘The CALPHAD thermodynamic databases are very useful to analyze the complex chemical reactions happening in high temperature material process.The FactSage thermodynamic database can be used to calculate complex phase diagrams and equilibrium phases involving refractories in industrial process.In this study,the FactSage thermodynamic database relevant to ZrO_(2)-based refractories was reviewed and the application of the database to understanding the corrosion of continuous casting nozzle refractories in steelmaking was presented.
基金supported by the National Natural Science Foundation of China[grant number 42275025]the Youth Innovation Promotion Association of the Chinese Academy of Sciences[grant number 2023084].
文摘Renewable energy includes all forms of energy produced from renewable sources in a sustainable manner, including bioenergy, geothermal energy, hydropower, ocean energy, solar energy, and wind energy. Less than one quarter of Africa’s renewable power generation potential is utilized. Africa’s natural endowments are enormous, yet the continent experiences high energy shortage. Amongst the classifications of energy sources, renewable and green energy sources are increasingly gaining popularity due to their sustainable nature and environmental concerns. This paper explores the continent’s natural energy sources and identifies pathways to sustainable development. The paper also narrows the renewable and green energy sources obtainable on the continent and presents their contribution to the development of the continent. The awareness level of Africans towards renewable energy is discussed and the challenges of renewable and green energy sources are highlighted. Finally, the roles to be played by the government and private organizations in the development of renewable and green energy sources in Africa are discussed.
基金supported by the National Natural Science Foundation of China (Grants Nos. 40376013, 40572128, and 40104003)
文摘Based on conservation of energy principle and heat flow data in China continent, the upper limit of 1.3 μW/m3 heat production is obtained for continental crust in China. Furthermore, using the data of heat flow and helium isotope ratio of underground fluid, the heat productions of different tectonic units in China continent are estimated in range of 0.58-1.12 μW/m3 with a median of 0.85 μW/m3. Accordingly, the contents of U, Th and K20 in China crust are in ranges of 0.83-1.76 μg/g, 3.16-6.69 μg/g, and 1.0%-2.12%, respectively. These results indicate that the abundance of radioactive elements in the crust of China continent is much higher than that of Archean crust; and this fact implies China's continental crust is much evolved in chemical composition. Meanwhile, significant lateral variation of crustal composition is also exhibited among different tectonic units in China continent. The crust of eastern China is much enriched in incompatible elements such as U, Th and K than that of western China; and the crust of orogenic belts is more enriched than that of platform regions. It can also be inferred that the crusts of eastern China and orogenic belts are much felsic than those of western China and platform regions, respectively, derived from the positive correlation between the heat production and SiO2 content of bulk crust. This deduction is consistent with the results derived from the crustal seismic velocity data in China. According to the facts of the lower seismic velocity of China than the average value of global crust, and the higher heat production of China continent compared with global crust composition models published by previous studies, it is deduced that the average composition models of global continent crust by Rudnick and Fountain (1995), Rudnick and Gao (2003), Weaver and Tarney (1984), Shaw et al. (1986), and Wedepohl (1995) overestimate the abundance of incompatible elements such as U, Th and K of continental crust.
文摘The formation of continents involves a combination of magmatic and metamorphic processes. These processes become indistinguishable at the crust-mantle interface, where the pressure-temperature(P-T)conditions of(ultra) high-temperature granulites and magmatic rocks are similar. Continents grow laterally, by magmatic activity above oceanic subduction zones(high-pressure metamorphic setting), and vertically by accumulation of mantle-derived magmas at the base of the crust(high-temperature metamorphic setting). Both events are separated from each other in time; the vertical accretion postdating lateral growth by several tens of millions of years. Fluid inclusion data indicate that during the high-temperature metamorphic episode the granulite lower crust is invaded by large amounts of low H2O-activity fluids including high-density CO2 and concentrated saline solutions(brines). These fluids are expelled from the lower crust to higher crustal levels at the end of the high-grade metamorphic event. The final amalgamation of supercontinents corresponds to episodes of ultra-high temperature metamorphism involving large-scale accumulation of these low-water activity fluids in the lower crust.This accumulation causes tectonic instability, which together with the heat input from the subcontinental lithospheric mantle, leads to the disruption of supercontinents. Thus, the fragmentation of a supercontinent is already programmed at the time of its amalgamation.
基金State Climbing Project (95-S-05-02) and State Natural Science Foundation of China (49724232).
文摘The mantle unsteady flows, which are in an incompressible and isoviscous spherical shell, are investigated by using algorithms of the parallel Lagrange multiplier dissonant decomposition method (LMDDM) and the parallel Lagrange multiplier discontinuous deformation analyses (LMDDA) in this paper. Some physical fields about mantle flows such as velocity, pressure, temperature, stress and the force to the crust of the Asian continent are calculated on a parallel computer.
基金the National Natural Science Foundation of China(grant 19972072)Project of the Open Laboratory of Continental Geodynamics of the Ministry of Land and Resources(grant 9812) Stat Project 305 rgrant 96—915—06—04).
文摘Continent-continent collision is the most important driving mechanism for the occurrence of various geological processes in the continental lithosphere. How to recognize and determine continent-continent collision, especially its four-dimensional temporal-spatial evolution, is a subject that geological communities have long been concerned about and studied. Continent-continent collision is mainly manifested by strong underthrusting (subduction) of the underlying block along an intracontinental subduction zone and continuous obduction (thrusting propagation) of the overlying block along the intracontinental subduction zone, the occurrence of a basin-range tectonic framework in a direction perpendicular to the subduction zone and the flexure and disruption of the Moho. On the basis of numerical modeling, the authors discuss in detail the couplings between various amounts and rates of displacement caused by basin subsidence, mountain uplift and Moho updoming and downflexure during obduction (thrusting propagation) and subduction and the migration pattern of basin centers. They are probably indications or criteria for judgment or determination of continent-continent collision.
文摘Worldwide comparison of lithospheric investigation results achieved from projects of COCORP, BIRPS, DEKORP, LITHOPROBE, ICDP, ECORS and SINOPROBE enables us to expand the classical Wilson cycle, which mainly describes evolution of ocean plates, into a complete and detailed cycle that describes generation, development and evolution of both ocean and continent plates. The expanded Wilson cycle presented in this paper introduces the evolution sequences of continental lithospheric processes by adding into the classical Wilson cycle with ocean-continent transition, continental collision and accretion, as well as continental rifting and splitting in details. These mentioned continental lithospheric processes have been presented by the author in a series of recent review papers in detail, and their summary and further deduction is presented in this paper.
文摘The key technology of semi-continuous conveyor system decides the successful using of this system. The key technology includes optimal initial building depth of this system,the crusher moving step and the layout of conveyor system are studied, and their calculating models are built up.
文摘We investigate the evolution of stress fields during the supercontinent cycle using the 2D Cartesian geometry model of thermochemical convection with the non-Newtonian rheology in the presence of floating deformable continents.In the course of the simulation,the supercontinent cycle is implemented several times.The number of continents considered in our model as a function of time oscillates around 3.The lifetime of a supercontinent depends on its dimension.Our results suggest that immediately before a supercontinent breakup,the over-lithostatic horizontal stresses in it(referring to the mean value by the computational area)are tensile and can reach-250 MPa.At the same time,a vast area beneath a supercontinent with an upward flow exhibits clearly the over-lithostatic compressive horizontal stresses of 50-100 МРа.The reason for the difference in stresses in the supercontinent and the underlying mantle is a sharp difference in their viscosity.In large parts of the mantle,the over-lithostatic horizontal stresses are in the range of±25 MPa,while the horizontal stresses along subduction zones and continental margins are significantly larger.During the process of continent-to-continent collisions,the compressive stresses can approximately reach 130 MPa,while within the subcontinental mantle,the tensile over-lithostatic stresses are about-50 MPa.The dynamic topography reflects the main features of the su-percontinent cycle and correlates with real ones.Before the breakup and immediately after the disin-tegration of the supercontinent,continents experience maximum uplift.During the supercontinent cycle,topographic heights of continents typically vary within the interval of about±1.5 km,relatively to a mean value.Topographic maxima of orogenic formations to about 2-4 km are detected along continent-to-continent collisions as well as when adjacent subduction zones interact with continental margins.
基金supported by the International Science&Technology Cooperation Program of China(ISTCP)(2011DFA22460)China Geological Survey(DD20190370)Geological Exploration Fund Project of Inner Mongolia Autonomous Region,P.R.China([2020]YS-01).
文摘Based on the comprehensive study of geology and geophysics in African continent,three types of lithosphere(craton-type,orogenic-type and rift-type)can be identified.Considering lithosphere discontinuities as the boundary,two first-order tectonic units(mainly cratonic-type in the west and rift-type in the east)are proposed.Different types of lithosphere can be divided into secondary-order and third-order structural units,and the blocks within lithosphere can be further divided into fourth-order structural units.The geological history,the formation process and significance of different types of lithosphere in African continent are briefly discussed.
文摘Since the end of the Paleozoic, various crustobodies of the Asian continental lithosphere have successively undergone activation, resulting in the formation of widespread diwa-regime mobile belts. This is one of the important events in the evolution-movement history of the Asian continental lithosphere, occupies an important position in the problems of global tectonics and forms a frontier subject in modern geoscience. This paper, from an angle of crustobody geotectonics, discusses the following problems: formation time, distribution 1imits, types, development peculiarities and geotectonic significance of the diwa-regime tectonic element ; geochemical conditions of ore formation, principal mineral associations and ma jor deposit types in diwa structures of the Asian continent and their difference from those in other tectonic elements i and relationships between diwa-type metallogenesis and polygenetic compound and ultragiant ore deposits. Such a discussion can contribute to a better understanding of the tectonic types, distribution pattern and economic value of non-ferrous and rare meta1 endogenic ore deposits, peat, lignite and oil-gas fields.