期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Short Amino-Terminal Part of Arabidopsis Phytochrome A Induces Constitutive Photomorphogenic Response 被引量:3
1
作者 Andra's Viczia'n E'va Ada'm +6 位作者 Iris Wolf Ja'nos Bindics Stefan Kircher Marc Heijde Roman Ulm Eberhard Scha'fer Ferenc Nagy 《Molecular Plant》 SCIE CAS CSCD 2012年第3期629-641,共13页
Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana, phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is media... Phytochrome A (phyA) is the dominant photoreceptor of far-red light sensing in Arabidopsis thaliana, phyA accumulates at high levels in the cytoplasm of etiolated seedlings, and light-induced phyA signaling is mediated by a com- plex regulatory network. This includes light- and FHY1/FHL protein-dependent translocation of native phyA into the nucleus in vivo. It has also been shown that a short N-terminal fragment of phyA (PHYA406) is sufficient to phenocopy this highly regulated cellular process in vitro. To test the biological activity of this N-terminal fragment of phyA in planta, we produced transgenic phyA-201 plants expressing the PHYA406-YFP (YELLOW FLUORESCENT PROTEIN)-DD, PHYA406- YFP-DD-NLS (nuclear localization signal), and PHYA406-YFP-DD-NES (nuclear export signal) fusion proteins. Here, we report that PHYA406-YFP-DD is imported into the nucleus and this process is partially light-dependent whereas PHYA406-YFP-DD-NLS and PHYA406-YFP-DD-NES display the expected constitutive localization patterns. Our results show that these truncated phyA proteins are light-stable, they trigger a constitutive photomorphogenic-like response when localized in the nuclei, and neither of them induces proper phyA signaling. We demonstrate that in vitro and in vivo PHYA406 Pfr and Pr bind COP1, a general repressor of photomorphogenesis, and co-localize with it in nuclear bodies. Thus, we conclude that, in planta, the truncated PHYA406 proteins inactivate COP1 in the nuclei in a light-independent fashion. 展开更多
关键词 ARABIDOPSIS cop phenotype phytochrome A cop1
原文传递
Substitution of a Conserved Glycine in the PHR Domain of Arabidopsis CRYPTOCHROME 1 Confers a Constitutive Light Response 被引量:3
2
作者 Nan-Nan Gu Yan-Chun Zhang Hong-Quan Yang 《Molecular Plant》 SCIE CAS CSCD 2012年第1期85-97,共13页
CRYPTOCHROMES (CRYs) are photolyase-like ultraviolet-A/blue light photoreceptors that mediate various light responses in plants. The signaling mechanism of Arabidopsis CRYs (CRY1 and CRY2) involves direct CRY-COP1... CRYPTOCHROMES (CRYs) are photolyase-like ultraviolet-A/blue light photoreceptors that mediate various light responses in plants. The signaling mechanism of Arabidopsis CRYs (CRY1 and CRY2) involves direct CRY-COP1 interaction. Here, we report that CRY1G380R, which carries a Gly-to-Arg substitution of the highly conserved G380 in the photo-lyase-related (PHR) domain of Arabidopsis CRY1, shows constitutive CRY1 photoreceptor activity in Arabidopsis. Transgenic plants overexpressing CRY1G380R display a constitutively photomorphogenic (COP) phenotype in darkness, as well as a dramatic early flowering phenotype under short-day light conditions (SD). We further demonstrate that CRY1G380R expression driven by the native CRY1 promoter also results in a COP phenotype in darkness. Moreover, over- expression of either the Arabidopsis homolog CRY2G377R or the rice ortholog OsCRYlbG388R of CRY1G380R in Arabidopsis results in a COP phenotype in darkness. Cellular localization studies indicate that CRY1G380R co-localizes with COP1 in the same nuclear bodies (NBs) in vivo and inhibits the nuclear accumulation of COP1 in darkness. These results suggest that the conserved G380 may play a critical role in regulating the photoreceptor activity of plant CRYs and that CRY1G380R might constitutively phenocopy the photo-activated CRY1 in darkness and thus constitutively mediate CRY1 signaling. 展开更多
关键词 ARABIDOPSIS CRY1 CRy1G380R cop phenotype cop1.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部