期刊文献+
共找到949篇文章
< 1 2 48 >
每页显示 20 50 100
Initiating Binary Metal Oxides Microcubes Electromagnetic Wave Absorber Toward Ultrabroad Absorption Bandwidth Through Interfacial and Defects Modulation 被引量:1
1
作者 Fushan Li Nannan Wu +8 位作者 Hideo Kimura Yuan Wang Ben Bin Xu Ding Wang Yifan Li Hassan Algadi Zhanhu Guo Wei Du Chuanxin Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期68-81,共14页
Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability... Cobalt nickel bimetallic oxides(NiCo_(2)O_(4))have received numerous attentions in terms of their controllable morphology,high temperature,corrosion resistance and strong electromagnetic wave(EMW)absorption capability.However,broadening the absorption bandwidth is still a huge challenge for NiCo_(2)O_(4)-based absorbers.Herein,the unique NiCo_(2)O_(4)@C core-shell microcubes with hollow structures were fabricated via a facile sacrificial template strategy.The concentration of oxygen vacancies and morphologies of the three-dimensional(3D)cubic hollow core-shell NiCo_(2)O_(4)@C framework were effectively optimized by adjusting the calcination temperature.The specially designed 3D framework structure facilitated the multiple reflections of incident electromagnetic waves and provided rich interfaces between multiple components,generating significant interfacial polarization losses.Dipole polarizations induced by oxygen vacancies could further enhance the attenuation ability for the incident EM waves.The optimized NiCo_(2)O_(4)@C hollow microcubes exhibit superior EMW absorption capability with minimum RL(RLmin)of-84.45 dB at 8.4 GHz for the thickness of 3.0 mm.Moreover,ultrabroad effective absorption bandwidth(EAB)as large as 12.48 GHz(5.52-18 GHz)is obtained.This work is believed to illuminate the path to synthesis of high-performance cobalt nickel bimetallic oxides for EMW absorbers with excellent EMW absorption capability,especially in broadening effective absorption bandwidth. 展开更多
关键词 Electromagnetic wave absorber NiCo_(2)O_(4)@C Microcubes Oxygen vacancy Effective absorption bandwidth
下载PDF
Synthesis, magnetic and electromagnetic wave absorption properties of planar anisotrop Y_2Co_(17)@SiO_(2) rare earth soft magnetic composites
2
作者 乔亮 涂成发 +8 位作者 吴伟 王文彪 杨晟宇 孙哲 吴鹏 杨金波 王常生 王涛 李发伸 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期425-432,共8页
Intermetallic complexes of rare-earth and 3d transition metals with core-shell structures are commonly employed as microwave absorbing materials due to their high saturation magnetizations and natural resonance in GHz... Intermetallic complexes of rare-earth and 3d transition metals with core-shell structures are commonly employed as microwave absorbing materials due to their high saturation magnetizations and natural resonance in GHz. Hence, we synthesized Y_2Co_(17)alloy via the co-precipitation reduction-diffusion technique, then coated the Y_2Co_(17)magnetic powders with SiO_(2)to create Y_2Co_(17)@SiO_(2) core-shell structures. The formation of Y_2Co_(17)@SiO_(2)/polyurethane(PU) at various volume fractions and their magnetic, electromagnetic properties were investigated using x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and vector network analyzer. The microwave absorption characteristics of Y_2Co_(17)@SiO_(2)/PU were also investigated at various volume fractions. We not only investigate the zero-reflection conditions of the samples with different volume fractions, but also show that every absorber has a strong reflection loss value(RL ≤-65.00 d B) and excellent microwave absorption properties with an average RL of Y_2Co_(17)@SiO_(2)/PU being below-10 d B at 8 GHz–18 GHz under different thicknesses, showing that the enhancement of microwave absorption performance arises from the balance between permeability and permittivity of absorber. 展开更多
关键词 Y_2Co_(17)@SiO_(2) Co-precipitation reduction diffusion microwave absorption zero-reflection condition reflection loss
下载PDF
Dielectric loss enhancement induced by the microstructure of CoFe_(2)O_(4) foam to realize broadband electromagnetic wave absorption
3
作者 Bin Shi Hongsheng Liang +2 位作者 Zijun Xie Qing Chang Hongjing Wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第7期1388-1397,共10页
CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss... CoFe_(2)O_(4)has been widely used for electromagnetic wave absorption owing to its high Snoek limit,high anisotropy,and suitable saturation magnetization;however,its inherent shortcomings,including low dielectric loss,high density,and magnetic agglomeration,limit its application as an ideal absorbent.This study investigated a microstructure regulation strategy to mitigate the inherent disadvantages of pristine CoFe_(2)O_(4)synthesized via a sol–gel auto-combustion method.A series of CoFe_(2)O_(4)foams(S0.5,S1.0,and S1.5,corresponding to foams with citric acid(CA)-to-Fe(NO_(3))_(3)·9H_(2)O molar ratios of 0.5,1.0,and 1.5,respectively)with two-dimensional(2D)curved surfaces were obtained through the adjustment of CA-to-Fe^(3+)ratio,and the electromagnetic parameters were adjusted through morphology regulation.Owing to the appropriate impedance matching and conductance loss provided by moderate complex permittivity,the effective absorption bandwidth(EAB)of S0.5 was as high as 7.3 GHz,exceeding those of most CoFe_(2)O_(4)-based absorbents.Moreover,the EAB of S1.5 reached 5.0 GHz(8.9–13.9 GHz),covering most of the X band,owing to the intense polarization provided by lattice defects and the heterogeneous interface.The three-dimensional(3D)foam structure circumvented the high density and magnetic agglomeration issues of CoFe_(2)O_(4)nanoparticles,and the good conductivity of 2D curved surfaces could effectively elevate the complex permittivity to ameliorate the dielectric loss of pure CoFe_(2)O_(4).This study provides a novel idea for the theoretical design and practical production of lightweight and broadband pure ferrites. 展开更多
关键词 CoFe_(2)O_(4)foam LIGHTWEIGHT broadband absorption microstructure regulation dielectric loss
下载PDF
Thermochemical splitting of CO_(2) on perovskites for CO production: A review
4
作者 Biduan Chen Harriet Kildahl +3 位作者 Hui Yang Yulong Ding Lige Tong Li Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期464-485,I0011,共23页
Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have bee... Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research. 展开更多
关键词 Perovskite Thermochemical cycles CO_(2) splitting Fuel production Non-stoichiometric
下载PDF
Performance enhancement and active sites identification of Cu-Cd bimetallic oxide derived catalysts for electrochemical CO_(2) reduction
5
作者 Cai Wang Xin Hu +7 位作者 Bairong Chen Houan Ren Xiaoyu Wang Yilin Zhang Xinyu Chen Yuping Liu Qingxin Guan Wei Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期50-58,共9页
The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ab... The development of earth-abundant electrocatalysts with high performance for electrochemical CO_(2)reduction(ECR)is of great significance.Cu-based catalysts have been widely investigated for ECR due to their unique ability to generate various carbonaceous products,but directing selectivity toward one certain product and identifying the real active sites during ECR are still full of challenge.Here,after the incorporation of CdO into CuO,the Cu_(0.5)Cd_(0.5)-O catalyst achieves a 10.3-fold enhancement for CO selectivity in comparison with CuO,and a CO faradic efficiency nearly 90%with a current density around20 mA cm^(-2)could maintain at least 60 h.Interestingly,a wide CO/H_(2)ratio(0.07-10)is reached on Cu_(x)Cd_(1-x)-O catalysts by varying the Cu/Cd ratio,demonstrating the potential of syngas production using such catalysts.The results of ex situ XRD,XPS,and in situ Raman reveal that the real active sites of Cu_(0.5)Cd_(0.5)-O catalysts for CO production during ECR reaction are the reconstructed mixed phases of CuCd alloy and CdCO_(3).In situ FTIR and theoretical calculations further implicate the presence of Cd related species promotes the CO desorption and inhibits the H_(2)evolution,thus leading to an enhanced CO generation. 展开更多
关键词 CO_(2)reduction Cu-Cd bimetallic Real active sites CO production
下载PDF
In-situ coating and surface partial protonation co-promoting performance of single-crystal nickel-rich cathode in all-solid-state batteries
6
作者 Maoyi Yi Jie Li +5 位作者 Mengran Wang Xinming Fan Bo Hong Zhian Zhang Aonan Wang Yanqing Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期137-143,I0005,共8页
The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poo... The poor electrochemical performance of all-solid-state batteries(ASSBs),which is assemblied by Ni-rich cathode and poly(ethylene oxide)(PEO)-based electrolytes,can be attributed to unstable cathodic interface and poor crystal structure stability of Ni-rich cathode.Several coating strategies are previously employed to enhance the stability of the cathodic interface and crystal structure for Ni-rich cathode.However,these methods can hardly achieve simplicity and high efficiency simultaneously.In this work,polyacrylic acid(PAA)replaced traditional PVDF as a binder for cathode,which can achieve a uniform PAA-Li(LixPAA(0<x≤1))coating layer on the surface of single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)due to H^(+)/Li^(+)exchange reaction during the initial charging-discharging process.The formation of PAA-Li coating layer on cathode can promote interfacial Li^(+)transport and enhance the stability of the cathodic interface.Furthermore,the partially-protonated surface of SC-NCM83 casued by H^(+)/Li^(+)exchange reaction can restrict Ni ions transport to enhance the crystal structure stability.The proposed SC-NCM83-PAA exhibits superior cycling performance with a retention of 92%compared with that(57.3%)of SC-NCM83-polyvinylidene difluoride(PVDF)after 200 cycles.This work provides a practical strategy to construct high-performance cathodes for ASSBs. 展开更多
关键词 Single-crystal LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2) In-situ coating PAA-Li Partial protonation
下载PDF
Studies on the Absorption of NO_2 by Polyethylene Glycol and the Oxidizing Properties of the Resulting Absorbent Product
7
作者 Xue Sen FAN Qing Zhi ZHANG +1 位作者 Xin Ying ZRANG Sen Song ZHANG (Department of Chemistry, Henan Normal University, Xinxiang, 453002) 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第9期747-748,共2页
PEG (Polyethylene glycol average molecular weight 300) is used as absorbent of NO2. The absorption efficiency is found to reach up to 97%. The absorbing product, PEG NO2, can be used to cleave benzyl ethers mildly and... PEG (Polyethylene glycol average molecular weight 300) is used as absorbent of NO2. The absorption efficiency is found to reach up to 97%. The absorbing product, PEG NO2, can be used to cleave benzyl ethers mildly and selectively to benzaldehyde and corresponding fatty alcohols, showing that PEG is a valuable oxidizing agent of benzyl ethers. As a carrier of NO2.PEG can be recovered and utilized repeatedly after the oxidation. 展开更多
关键词 NO Studies on the absorption of NO2 by Polyethylene Glycol and the Oxidizing Properties of the Resulting Absorbent Product PEG
下载PDF
O_2/CO_2煤粉燃烧时细灰颗粒中痕量元素分布特性的实验研究 被引量:7
8
作者 李意 盛昌栋 +2 位作者 刘小伟 姚洪 徐明厚 《工程热物理学报》 EI CAS CSCD 北大核心 2008年第7期1236-1238,共3页
通过三个煤种在沉降炉中的燃烧实验,采用X-射线荧光光谱仪对实验收集的细灰颗粒物的元素组成进行定量测定,研究了O_2/CO_2煤粉燃烧对痕量元素行为的影响。结果表明,与O_2/N_2燃烧相比,O_2/CO_2燃烧对LPI颗粒物中Cu、Zn和Mn元素的分布形... 通过三个煤种在沉降炉中的燃烧实验,采用X-射线荧光光谱仪对实验收集的细灰颗粒物的元素组成进行定量测定,研究了O_2/CO_2煤粉燃烧对痕量元素行为的影响。结果表明,与O_2/N_2燃烧相比,O_2/CO_2燃烧对LPI颗粒物中Cu、Zn和Mn元素的分布形式没有影响,但显著增加了Cu、Zn元素在亚微米颗粒中的富集程度,Mn元素在细灰颗粒上没有出现富集,但O_2/CO_2燃烧时Mn在亚微米和超微米颗粒中的含量均显著减少。 展开更多
关键词 煤粉 O_2/CO_2燃烧 痕量元素 细灰颗粒
下载PDF
利用钙钛矿型氧化物制取O_2-CO_2混合气体的实验研究 被引量:7
9
作者 张腾 李振山 蔡宁生 《工程热物理学报》 EI CAS CSCD 北大核心 2008年第9期1591-1594,共4页
针对O_2/CO_2燃烧的特点,提出了利用O_2/CO_2燃烧再循环烟气直接制取O_2-CO_2混合气体的方法。采用溶胶-凝胶法制备了五种钙钛矿型金属氧化物,利用热重分析仪(TGA)分别考察了这五种物质对空气中O_2的吸附特性,以及在CO_2气氛下与CO_2的... 针对O_2/CO_2燃烧的特点,提出了利用O_2/CO_2燃烧再循环烟气直接制取O_2-CO_2混合气体的方法。采用溶胶-凝胶法制备了五种钙钛矿型金属氧化物,利用热重分析仪(TGA)分别考察了这五种物质对空气中O_2的吸附特性,以及在CO_2气氛下与CO_2的反应特性。结果表明,所制备的五种钙钛矿型金属氧化物都能吸附空气中的O_2,但均会与CO_2存在不同程度的反应,其中新合成的两种钙钛矿型金属氧化物材料能显著减弱这一不利反应。 展开更多
关键词 二氧化碳捕集 O_2/CO_2燃烧 钙钛矿型金属氧化物 制氧
下载PDF
低碳经济下电厂O_2/CO_2煤粉燃烧技术的应用 被引量:1
10
作者 黄纯亮 陈美端 李宽 《东北电力大学学报》 2010年第4期18-21,共4页
电厂O_2/CO_2煤粉燃烧技术是一种新型的煤粉燃烧技术,它采用纯氧和再循环烟气代替空气组织煤粉的燃烧,也被称作富氧燃烧技术或氧气/烟气再循环技术。本文介绍了O_2/CO_2燃烧技术国内外发展现状;阐述了电厂O_2/CO_2煤粉燃烧技术的特点,... 电厂O_2/CO_2煤粉燃烧技术是一种新型的煤粉燃烧技术,它采用纯氧和再循环烟气代替空气组织煤粉的燃烧,也被称作富氧燃烧技术或氧气/烟气再循环技术。本文介绍了O_2/CO_2燃烧技术国内外发展现状;阐述了电厂O_2/CO_2煤粉燃烧技术的特点,并以某电厂600MW亚临界四角切圆一次中间再热控制循环汽包炉对其特点进行了计算分析。研究表明:电厂O_2/CO_2煤粉燃烧技术是一种经济、高效、节能、环保的燃烧技术,正处于试验研究阶段。在低碳经济下,电厂O_2/CO_2煤粉燃烧技术的应用有利于推进国家节能减排目标的实现,符合建设资源节约型、环境友好型社会的要求。 展开更多
关键词 低碳经济 O_2/CO_2 CCS 节能减排
下载PDF
Hydrophilic bi-functional B-doped g-C_(3)N_(4) hierarchical architecture for excellent photocatalytic H_(2)O_(2) production and photoelectrochemical water splitting 被引量:3
11
作者 Yang Ding Soumyajit Maitra +8 位作者 Chunhua Wang Runtian Zheng Meiyu Zhang Tarek Barakat Subhasis Roy Jing Liu Yu Li Tawfique Hasan Bao-Lian Su 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期236-247,I0007,共13页
Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.He... Graphitic carbon nitride(g-C_(3)N_(4))has attracted great interest in photocatalysis and photoelectrocatalysis.However,their poor hydrophilicity poses a great challenge for their applications in aqueous environment.Here,we demonstrate synthesis of a hydrophilic bi-functional hierarchical architecture by the assembly of B-doped g-C_(3)N_(4)nanoplatelets.Such hierarchical B-doped g-C_(3)N_(4)material enables full utilization of their highly enhanced visible light absorption and photogenerated carrier separation in aqueous medium,leading to an excellent photocatalytic H_(2)O_(2)production rate of 4240.3μM g^(-1)h^(-1),2.84,2.64 and 2.13 times higher than that of the bulk g-C_(3)N_(4),g-C_(3)N_(4)nanoplatelets and bulk B doped g-C_(3)N_(4),respectively.Photoanodes based on these hierarchical architectures can generate an unprecedented photocurrent density of 1.72 m A cm^(-2)at 1.23 V under AM 1.5 G illumination for photoelectrochemical water splitting.This work makes a fundamental improvement towards large-scale exploitation of highly active,hydrophilic and stable metal-free g-C_(3)N_(4)photocatalysts for various practical applications. 展开更多
关键词 Boron doping HYDROPHILICITY Hierarchically assembled architectures Photocatalytic H_(2)O_(2)production Photoelectrocatalytic water splitting
下载PDF
The quasi-activity coefficients of non-electrolytes in aqueous solution with organic ions and its application on the phase splitting behaviors prediction for CO_(2) absorption 被引量:1
12
作者 Xiaomeng Zhao Xingyu Li +7 位作者 Changjun Liu Shan Zhong Houfang Lu Hairong Yue Kui Ma Lei Song Siyang Tang Bin Liang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期316-323,共8页
CO_(2)capture with a low energy consumption is of important application significance for reducing CO_(2)emission.The phase-change absorbent developed in recent years shows its potential for low-energy CO_(2)capture.Th... CO_(2)capture with a low energy consumption is of important application significance for reducing CO_(2)emission.The phase-change absorbent developed in recent years shows its potential for low-energy CO_(2)capture.The unclear phase-splitting rule hinders the efficient development of CO_(2)phase-change absorbents.To predict phase-splitting behaviors of mono/poly-amine-organic solvent-water system with various concentrations,a quasi-activity coefficient was developed based on Debye&Mc Aulay equation and some Density function theory descriptors.Six models based on Debye&Mc Aulay equation were developed with different ion radius,descriptors or poly-amine-CO_(2)products.The phase-splitting boundary was drawn on the model with the best predictability.This quasi-activity coefficient would provide guidance for the phase-splitting systems development,especially for polyamines. 展开更多
关键词 CO_(2)absorption Polyamines Biphasic system Phase-splitting Salting-out effect
下载PDF
Highly Efficient Photothermocatalytic CO_(2) Reduction in Ni/Mg-Doped Al_(2)O_(3) with High Fuel Production Rate, Large Light-to-Fuel Efficiency, and Good Durability 被引量:1
13
作者 Xin Tan Shaowen Wu +5 位作者 Yuanzhi Li Qian Zhang Qianqian Hu Jichun Wu An Zhang Yongdi Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期582-591,共10页
A novel nanocomposite of Ni nanoparticles loaded on Mg-doped Al_(2)O_(3)(Ni/Mg-Al_(2)O_(3))was prepared.By photothermocatalytic CO_(2) reduction with methane(CRM)merely using focused UV-vis-IR illumination on Ni/Mg-Al... A novel nanocomposite of Ni nanoparticles loaded on Mg-doped Al_(2)O_(3)(Ni/Mg-Al_(2)O_(3))was prepared.By photothermocatalytic CO_(2) reduction with methane(CRM)merely using focused UV-vis-IR illumination on Ni/Mg-Al_(2)O_(3),high production rates of H_(2)(r_(H2),69.71 mmol min^(−1) g^(−1))and CO(rCO,74.57 mmol min^(−1) g^(−1))and an extremely large light-to-fuel efficiency(η,32.9%)are acquired.High rH2 and rCO(51.07 and 59.66 mmol min^(−1) g^(−1))and a largeη(32.5%)are acquired even by using focusedλ>560 nm vis-IR illumination.Ni/Mg-Al_(2)O_(3) shows good durability for photothermocatalytic CRM due to the side reaction of carbon deposition being enormously inhibited in comparison with a reference catalyst of Ni nanoparticles loaded on Al_(2)O_(3).The enormous carbon deposition inhibition is ascribed to the presence of a fence of CO_(2) molecules(strongly adsorbed on Mg-doped Al_(2)O_(3))around Ni nanoparticles,which block the polymerization and growth of carbon species to nanofibers by promoting the oxidation of carbon species formed by CH_(4) dissociation.The high photothermocatalytic activity of Ni/Mg-Al_(2)O_(3) arises from efficient light-driven thermocatalytic CRM.A photoactivation is found to considerably raise the photothermocatalytic activity of Ni/Mg-Al_(2)O_(3) because of the apparent activation energy(Ea)being substantially decreased upon focused illumination.The Ea reduction is associated with the rate-determining steps of CRM(e.g.,CH_(4) dissociation and the oxidation of carbon species)being accelerated upon focused illumination. 展开更多
关键词 CO_(2)reduction light-to-fuel efficiency Ni/Mg-Al_(2)O_(3)nanocomposite photocatalytic photothermocatalytic
下载PDF
Design and synthesis of thermally stable single atom catalysts for thermochemical CO_(2) reduction 被引量:1
14
作者 Eswaravara Prasadarao Komarala Ayesha A.Alkhoori +2 位作者 Xiaolong Zhang Hui-Ming Cheng Kyriaki Polychronopoulou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期246-262,I0006,共18页
The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for... The continuous and excessive emission of CO_(2)into the atmosphere presents a pressing challenge for global sustainable development.In response,researchers have been devoting significant efforts to develop methods for converting CO_(2)into valuable chemicals and fuels.These conversions have the potential to establish a closed artificial carbon cycle and provide an alternative resource to depleting fossil fuels.Among the various conversion routes,thermochemical CO_(2)reduction stands out as a promising candidate for industrialization.Within the realm of heterogeneous catalysis,single atom catalysts(SACs)have garnered significant attention.The utilization of SACs offers tremendous potential for enhancing catalytic performance.To achieve optimal activity and selectivity of SACs in CO_(2)thermochemical reduction reactions,a comprehensive understanding of key factors such as single atom metal-support interactions,chemical coordination,and accessibility of active sites is crucial.Despite extensive research in this field,the atomic-scale reaction mechanisms in different chemical environments remain largely unexplored.While SACs have been found successful applications in electrochemical and photochemical CO_(2)reduction reactions,their implementation in thermochemical CO_(2)reduction encounters challenges due to the sintering and/or agglomeration effects that occur at elevated temperatures.In this review,we present a unique approach that combines theoretical understanding with experimental strategies to guide researchers in the design of controlled and thermally stable SACs.By elucidating the underlying principles,we aim to enable the creation of SACs that exhibit stable and efficient catalytic activity for thermochemical CO_(2)reduction reactions.Subsequently,we provide a comprehensive overview of recent literature on noble metal-and transition metal-based SACs for thermochemical CO_(2)reduction.The current review is focused on certain CO_(2)-derived products involving one step reduction only for simplicity and for better understanding the SACs enhancement mechanism.We emphasize various synthesis methods employed and highlight the catalytic activity of these SACs.Finally,we delve into the perspectives and challenges associated with SACs in the context of thermochemical CO_(2)reduction reactions,providing valuable insights for future research endeavor.Through this review,we aim to contribute to the advancement of SACs in the field of thermochemical CO_(2)reduction,shedding light on their potential as effective catalysts and addressing the challenges that need to be overcome for their successful implementation as paradigm shift in catalysis. 展开更多
关键词 CO_(2) utilization CO_(2) conversion SACs Added-value products Thermochemical catalysis
下载PDF
Recent advances in bismuth-based multimetal oxide photocatalysts for hydrogen production from water splitting:Competitiveness,challenges,and future perspectives 被引量:2
15
作者 Zheng Zhu Shipeng Wan +7 位作者 Yunxia Zhao Yaxin Gu Yaobin Wang Yong Qin Zhihui Zhang Xinlei Ge Qin Zhong Yunfei Bu 《Materials Reports(Energy)》 2021年第2期22-34,共13页
The efficient utilization of photocatalytic technology is essential for clean energy.Bismuth-based multimetal oxides(Bi_(2)WO_(6),Bi_(2)MoO_(6),BiVO_(4)and Bi_(4)Ti_(3)O_(12))have aroused widespread attention as a vis... The efficient utilization of photocatalytic technology is essential for clean energy.Bismuth-based multimetal oxides(Bi_(2)WO_(6),Bi_(2)MoO_(6),BiVO_(4)and Bi_(4)Ti_(3)O_(12))have aroused widespread attention as a visible light responsive photocatalyst for hydrogen evolution due to their low cost,nontoxicity,modifiable morphology,and outstanding optical and chemical properties.Nevertheless,the photocatalytic activities of pure materials are unsatisfactory because of their relative small specific surface area,poor quantum yield,and the rapid recombination of photogenerated carriers.Therefore,some modification strategies,including morphological control,semiconductor combination,doping,and defect engineering,have been systematically studied to enhance photocatalytic H_(2)evolution activity in the past few years.Herein,we summarize the recent research progress on bismuth-based photocatalysts,pointing out the prospects,opportunities and challenges of bismuth-based photocatalysts.Eventually,we aims to put forward valuable suggestions for designing of bismuth-based photocatalysts applied in hydrogen production on the premise of consolidating the existing theoretical basis of photocatalysis. 展开更多
关键词 Bi_(2)WO_(6) Bi_(2)MoO_(6) BiVO_(4) Bi_(4)Ti_(3)O_(12) Morphological control Semiconductor combination HETEROJUNCTION DOPING Defect Hydrogen production
下载PDF
Hydrogen production from methane and carbon dioxide mixture using all-solid-state electrochemical cell based on a proton-conducting membrane and redox-robust composite electrodes
16
作者 Denis Osinkin Evgeniy Tropin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第6期576-584,I0016,共10页
In recent years, interest in hydrogen as a fuel has sharply increased in the field of alternative and green energy due to its high energy capability and zero-emission behaviour. As a result, research in the developmen... In recent years, interest in hydrogen as a fuel has sharply increased in the field of alternative and green energy due to its high energy capability and zero-emission behaviour. As a result, research in the development of new highly efficient methods for producing high-purity hydrogen is relevant. This paper presents, for the first time, the test results of an electrochemical cell with a proton-conducting La_(0.9)Sr_(0.1)ScO_(3-δ) electrolyte and symmetrical Sr_(1.95)Fe_(1.4)Ni_(0.1)Mo_(0.5)O_(6-δ)+ La_(0.9)Sr_(0.1)Sc_(0.9)Co_(0.1)O_(3-δ) electrodes as a hybrid setup for electricity generation in proton ceramic fuel cell mode, for hydrogen separation from H_(2)+ Ar mixture and the production of high-purity hydrogen from methane with simultaneous CO_(2) utilization.It was found that this electrochemical cell generates high flow rates of hydrogen during its separation through a proton-conducting membrane from H_(2)+ Ar mixture, about 500 cm^(3)h^(-1)cm^(-2)at a current density of 0.6 A cm^(-2)as well as about 370 cm^(3) h^(-1)cm^(-2)at a current density of 0.5 A cm^(-2) from CH_(4)+ CO_(2) mixture at 800 ℃ which shows that these cells are promising for hydrogen production. 展开更多
关键词 Protonic ceramic fuel cell Hydrogen production Symmetrical electrodes Sr_(2)Fe_(1.5)Mo_(0.5)O_(6–δ) CO_(2)utilization
下载PDF
Energy,economic and environmental assessment of photocatalytic methane production:a comparative case study between Japan and Malaysia
17
作者 Yudai Tanaka M.Hasanuzzaman 《Global Energy Interconnection》 EI CAS CSCD 2022年第2期192-205,共14页
Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold a... Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold advantages:reduction in CO_(2)emission and production of artificial natural gas(methane)at the same time.In this paper,comparative energy,economic and environmental assessment of such photocatalytic methane production has been carried out between Japan and Malaysian conditions.Assumptions on the photocatalytic methane production plant and estimation of energy production,CO_(2)emission reduction,and economic indicators are made based on previous research and existing technologies.Energy analysis shows that Malaysia has a higher potential for energy production and CO_(2)emission reduction than Japan.Economic analysis reveals that the feasible reaction efficiencies of the plant in Japan and Malaysia are 8%.The slightly higher conversion efficiency in Malaysia is due to the energy price and CO_(2)tax.For the implementation of the photocatalytic methane production plant,the high energy price and CO_(2)tax will work as a driving force. 展开更多
关键词 PHOTOCATALYSIS CO_(2)reduction Photocatalytic methane production CO_(2)tax
下载PDF
A review of pulse electrolysis for efficient energy conversion and chemical production
18
作者 Tao Liu Jinling Wang +1 位作者 Xuejing Yang Ming Gong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期69-82,I0003,共15页
Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditio... Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditions that sometimes result in unsatisfactory efficiencies or selectivities.Pulse electrolysis by pulsating and programming the potentials/currents can feature unique tunability to the electrodeelectrolyte interface properties that can give rise to drastically different electrochemical behaviors compared to the steady-state counterparts.Although invented almost 100 years ago,pulse electrolysis has received little attention over the period,but has recently attracted a revived focus toward the energyefficient electrolysis.This review will summarize the history and recent efforts of pulse electrolysis in three categories:water electrolysis,CO_(2)electrolysis and other electrolysis.In each section,the advantage of pulse electrolysis over steady-state electrolysis will be discussed in detail,giving a comprehensive overview of the pulse effect on the electrolytic systems.Finally,we will provide our vision of future directions in pulse electrolysis based on previous works. 展开更多
关键词 Pulse electrolysis Energy conversion Chemical production Water splitting CO_(2) reduction Energy electrocatalysis
下载PDF
Using triple oxygen isotopes and oxygen-argon ratio to quantify ecosystem production in the mixed layer of northern South China Sea slope region
19
作者 Zhuoyi Zhu Jun Wang +5 位作者 Guiling Zhang Sumei Liu Shan Zheng Xiaoxia Sun Dongfeng Xu Meng Zhou 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第6期1-15,共15页
Quantifying the gross and net production is an essential component of carbon cycling and marine ecosystem studies.Triple oxygen isotope measurements and the O_(2)/Ar ratio are powerful indices in quantifying the gross... Quantifying the gross and net production is an essential component of carbon cycling and marine ecosystem studies.Triple oxygen isotope measurements and the O_(2)/Ar ratio are powerful indices in quantifying the gross primary production and net community production of the mixed layer zone,respectively.Although there is a substantial advantage in refining the gas exchange term and water column vertical mixing calibration,application of mixed layer depth history to the gas exchange term and its contribution to reducing indices error are unclear.Therefore,two cruises were conducted in the slope regions of the northern South China Sea in October 2014(autumn)and June 2015(spring).Discrete water samples at Station L07 in the upper 150 m depth were collected for the determination ofδ^(17)0,δ^(18)O,and the O_(2)/Ar ratio of dissolved gases.Gross oxygen production(GOP)was estimated using the triple oxygen isotopes of the dissolved O_(2),and net oxygen production(NOP)was calculated using O_(2)/Ar ratio and O_(2)concentration.The vertical mixing effect in NOP was calibrated via a N_(2)O based approach.GOP for autumn and spring was(169±23)mmol/(m^(2)·d)(by O_(2))and(189±26)mmol/(m^(2)·d)(by O_(2)),respectively.While NOP was 1.5 mmol/(m^(2)·d)(by O_(2))in autumn and 8.2 mmol/(m^(2)·d)(by O_(2))in spring.Application of mixed layer depth history in the gas flux parametrization reduced up to 9.5%error in the GOP and NOP estimations.A comparison with an independent O_(2)budget calculation in the diel observation indicated a26%overestimation in the current GOP,likely due to the vertical mixing effect.Both GOP and NOP in June were higher than those in October.Potential explanations for this include the occurrence of an eddy process in June,which may have exerted a submesoscale upwelling at the sampling station,and also the markedly higher terrestrial impact in June. 展开更多
关键词 gross primary production net community production triple oxygen isotopes O_(2)/Ar air-sea gas flux piston velocity
下载PDF
Trends and advances in the development of coal fly ash-based materials for application in hydrogen-rich gas production:A review
20
作者 Kang Gao Maria C.Iliuta 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第10期485-512,I0013,共29页
Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a ... Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes. 展开更多
关键词 Coal fly ash Catalyst/support High temperature CO_(2)sorbent Bifunctional material Hydrogen production Conventional/intensified process
下载PDF
上一页 1 2 48 下一页 到第
使用帮助 返回顶部