期刊文献+
共找到10,660篇文章
< 1 2 250 >
每页显示 20 50 100
Effects of ZrO_2 on the Performance of CuO-ZnO-Al_2O_3/HZSM-5 Catalyst for Dimethyl Ether Synthesis from CO_2 Hydrogenation 被引量:13
1
作者 Yanqiao Zhao Jixiang Chen Jiyan Zhang 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第4期389-392,共4页
A series of composite catalysts were prepared by the wet mixing method, and the mass ratio of CuO-ZnO-Al2O3-ZrO2 component to HZSM-5 zeolite (molar ratio of SiO2 to Al2O3 being 25) was 2:1. The CuO-ZnO-Al2O3-ZrO2 ... A series of composite catalysts were prepared by the wet mixing method, and the mass ratio of CuO-ZnO-Al2O3-ZrO2 component to HZSM-5 zeolite (molar ratio of SiO2 to Al2O3 being 25) was 2:1. The CuO-ZnO-Al2O3-ZrO2 (CuO/ZnO/Al2O3=3/6/1 by weight) component was prepared by a modified 'two-step' co-precipitation method. The effects of ZrO2 on the performance of CuO-ZnO-Al2O3/HZSMo5 catalyst for dimethyl ether synthesis from CO2 hydrogenation were investigated. It was found that ZrO2 improved the properties of CuO-ZnO-Al2O3/HZSM-5 as a structural promoter. 展开更多
关键词 CuO-ZnO-Al2O3/HZSM-5 catalyst CO2 hydrogenation dimethyl ether ZIRCONIA
下载PDF
Study of CO_2 Hydrogenation to Methanol over CU-V/γ-Al_2O_3 Catalyst 被引量:4
2
作者 Yiping Zhang Jinhua Fei +1 位作者 Yingmin Yu Xiaoming Zheng 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2007年第1期12-15,共4页
The effect of vanadium addition to Cu/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition.... The effect of vanadium addition to Cu/γ-Al2O3 catalyst used in the hydrogenation of CO2 to produce methanol was studied. It was found that the catalytic performance of the Cu-based catalyst improved after V addition. The influence of reaction temperature, space velocity and the molar ratio of H2 to CO2 on the performance of 12%Cu-6%V/γ-Al2O3 catalyst were also studied. The results indicated that the best conditions for reaction were as follows: 240 ℃, 3600 h^-1 and a molar ratio of H2 to 602 of 3:1. The results of XRD and TPR characterization demonstrated that the addition of V enhanced the dispersion of the supported CuO species, which resulted in the enhanced catalytic performance of Cu-V/γ-Al2O3 binary catalyst. 展开更多
关键词 CO2 hydrogenation METHANOL COPPER VANADIUM
下载PDF
Ti-Si composite oxide-supported cobalt catalysts for CO_2 hydrogenation 被引量:4
3
作者 Jakrapan Janlamool Piyasan Praserthdam Bunjerd Jongsomjit 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第5期558-564,共7页
In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prep... In the present work, different silica-based supported cobalt (Co) catalysts were synthesized and used for CO2 hydrogenation for methanation. Different supports, such as SSP, MCM-41, TiSSP and TiMCM were used to prepare Co catalysts with 20 wt% Co loading. The supports and catalysts were characterized by means of N2 physisorption, XRD, SEM/EDX, XPS, TPR and CO chemisorption. It is found that after calcination of catalysts, Ti is present in the form of anatase. The introduction of Ti plays important roles in the properties of Co catalysts by:(i) facilitating the reduction of Co oxides species which are strongly interacted with support, (ii) preventing the formation of silicate compounds, and (iii) inhibiting the RWGS reaction. Based on CO2 hydrogenation, the CoTiMCM catalyst exhibites the highest activity and stability. 展开更多
关键词 CO2 hydrogenation TITANIA-SILICA cobalt catalysts METHANATION
下载PDF
Effects of Potassium and Manganese Promoters on Nitrogen-Doped Carbon Nanotube-Supported Iron Catalysts for CO_2 Hydrogenation 被引量:6
4
作者 Praewpilin Kangvansura Ly May Chew +6 位作者 Chanapa Kongmark Phatchada Santawaja Holger Ruland Wei Xia Hans Schulz Attera Worayingyong Martin Muhler 《Engineering》 SCIE EI 2017年第3期385-392,共8页
氮掺杂碳纳米管(NCNTs)作为载体负载铁(Fe)纳米颗粒,可应用于CO_2多相催化加氢反应(633 K和25 bar)。当将钾(K)和锰(Mn)作为助催化剂时,Fe/NCNT展现出优异的CO_2加氢性能,在体积空速(GHSV)为3.1 L·g^(–1)·h^(–1)时转化率可... 氮掺杂碳纳米管(NCNTs)作为载体负载铁(Fe)纳米颗粒,可应用于CO_2多相催化加氢反应(633 K和25 bar)。当将钾(K)和锰(Mn)作为助催化剂时,Fe/NCNT展现出优异的CO_2加氢性能,在体积空速(GHSV)为3.1 L·g^(–1)·h^(–1)时转化率可达34.9%。当使用K作为助催化剂时,反应对烯烃和短链烷烃具有高的选择性。当K和Mn同时作为助催化剂时,其催化活性能够稳定地维持60 h。助催化剂Mn的结构效应通过X射线衍射、氢气程序升温还原以及近边X射线吸收精细结构进行表征。助催化剂Mn不仅能够稳定中间态FeO,且能降低程序升温还原的起始温度。通过探针反应NH3的催化分解来表征助催化剂效应。当K和Mn作为助催化剂时,Fe/NCNT具有最好的催化活性。在还原条件下,当K作为助催化剂时,Fe/NCNT具有最优异的热稳定性。 展开更多
关键词 CO_2加氢 铁基催化剂 n型碳纳米管 Mn助剂 K助剂
下载PDF
The thermodynamics analysis and experimental validation for complicated systems in CO_2 hydrogenation process 被引量:2
5
作者 Chunmiao Jia Jiajian Gao +2 位作者 Yihu Dai Jia Zhang Yanhui Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期1027-1037,共11页
Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,c... Catalytic conversion of COinto chemicals and fuels is an alternative to alleviate climate change and ocean acidification.The catalytic reduction of COby Hcan lead to the formation of various products:carbon monoxide,carboxylic acids,aldehydes,alcohols and hydrocarbons.In this paper,a comprehensive thermodynamics analysis of COhydrogenation is conducted using the Gibbs free energy minimization method.The results show that COreduction to CO needs a high temperature and H/COratio to achieve a high COconversion.However,synthesis of methanol from COneeds a relatively high pressure and low temperature to minimize the reverse water-gas shift reaction.Direct COhydrogenation to formic acid or formaldehyde is thermodynamically limited.On the contrary,production of CHfrom COhydrogenation is the thermodynamically easiest reaction with nearly 100%CH4 yield at moderate conditions.In addition,complex reactions with more than one product are also calculated in this work.Among the considered carboxylic acids(HCOOH,CHCOOH and CHCOOH),propionic acid dominates in the product stream(selectivity above 90%).The same trend can also be found in the hydrogenation of COto aldehydes and alcohols with the major product of propionaldehyde and butanol,respectively.In the process of COhydrogenation to alkenes,low temperature,high pressure,and high Hpartial pressure favor the COconversion.CHis the most thermodynamically favorable among all considered alkynes under different temperatures and pressures.The thermodynamic calculations are validated with experimental results,suggesting that the Gibbs free energy minimization method is effective for thermodynamically understanding the reaction network involved in the COhydrogenation process,which is helpful for the development of high-performance catalysts. 展开更多
关键词 CO2 hydrogenation Thermodynamics analysis Gibbs free energy minimization method
下载PDF
Effect of Titanium on Methanol Synthesis from CO_2 Hydrogenation over Cu/γ-Al_2O_3
6
作者 Gong Xin QI Jin Hua FEI +1 位作者 Xiao Ming ZHENG Zhao Yin HOU 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第6期537-540,共4页
Titanium-modified (-alumina supported CuO catalyst has been prepared and used to methanol synthesis from CO_2 hydrogenation. The addition of Ti to the CuO/(-Al_2O_3 catalyst made the copper in the catalyst exist in m... Titanium-modified (-alumina supported CuO catalyst has been prepared and used to methanol synthesis from CO_2 hydrogenation. The addition of Ti to the CuO/(-Al_2O_3 catalyst made the copper in the catalyst exist in much smaller crystallites. The effect of the loading of Ti on the activity and selectivity to methanol from CO_2 hydrogenation was investigated. The activity was found to increase with the increasing of surface area of metallic copper, but it is not a linear relationship. 展开更多
关键词 CO_(2) hydrogenation CuO/(-Al2O3-TiO2 methanol synthesis
下载PDF
CO_(2) hydrogenation to methanol over the copper promoted In_(2)O_(3) catalyst
7
作者 Rui Zou Chenyang Shen +4 位作者 Kaihang Sun Xinbin Ma Zhuoshi Li Maoshuai Li Chang-Jun Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期135-145,I0004,共12页
The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirm... The metal promoted In_(2)O_(3) catalysts for CO_(2) hydrogenation to methanol have attracted wide attention because of their high activity with high methanol selectivity.However,there was still no experimental confirmation if copper could be a good promoter for In_(2)O_(3).Herein,the Cu promoted In_(2)O_(3) catalyst was prepared using a deposition-precipitation method.Such prepared Cu/In_(2)O_(3) catalyst shows significantly higher CO_(2) conversion and space time yield(STY)of methanol,compared to the un-promoted In_(2)O_(3) catalyst.The loading of Cu facilitates the activation of both H_(2) and CO_(2) with the interface between the Cu cluster and defective In_(2)O_(3) as the active site.The Cu/In_(2)O_(3) catalyst takes the CO hydrogenation pathway for methanol synthesis from CO_(2) hydrogenation.It exhibits a unique size effect on the CO adsorption.At temperatures below 250℃,CO adsorption on Cu/In_(2)O_(3) is stronger than that on In_(2)O_(3),causing higher methanol selectivity.With increasing temperatu res,the Cu catalyst aggregates,which leads to the formation of weak CO adsorption site and causes a decrease in the methanol selectivity.Compared with other metal promoted In_(2)O_(3) catalysts,it can be concluded that the catalyst with stronger CO adsorption possesses higher methanol selectivity. 展开更多
关键词 CO_(2)hydrogenation METHANOL Cu In_(2)O_(3) CO SELECTIVITY DFT
下载PDF
Preparation of palladium-based catalyst by plasma-assisted atomic layer deposition and its applications in CO_(2) hydrogenation reduction
8
作者 唐守贤 田地 +4 位作者 李筝 王正铎 刘博文 程久珊 刘忠伟 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期31-39,共9页
Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is report... Supported Pd catalyst is an important noble metal material in recent years due to its high catalytic performance in CO_(2)hydrogenation.A fluidized-bed plasma assisted atomic layer deposition(FP-ALD) process is reported to fabricate Pd nanoparticle catalyst over γ-Al_(2)O_(3)or Fe_(2)O_(3)/γ-Al_(2)O_(3)support,using palladium hexafluoroacetylacetonate as the Pd precursor and H_(2)plasma as counter-reactant.Scanning transmission electron microscopy exhibits that highdensity Pd nanoparticles are uniformly dispersed over Fe_(2)O_(3)/γ-Al_(2)O_(3)support with an average diameter of 4.4 nm.The deposited Pd-Fe_(2)O_(3)/γ-Al_(2)O_(3)shows excellent catalytic performance for CO_(2)hydrogenation in a dielectric barrier discharge reactor.Under a typical condition of H_(2)to CO_(2)ratio of 4 in the feed gas,the discharge power of 19.6 W,and gas hourly space velocity of10000 h^(-1),the conversion of CO_(2)is as high as 16.3% with CH_(3)OH and CH4selectivities of 26.5%and 3.9%,respectively. 展开更多
关键词 atomic layer deposition CO_(2)hydrogenation palladium based catalyst
下载PDF
Increased Oxygen Vacancies in CuO-ZnO Snowflake-like Composites Drive the Hydrogenation of CO_(2) to Methanol
9
作者 San Xiaoguang Wu Wanmeng +4 位作者 Zhang Lei Meng Dan Chang Xiangshuang Tan Jianen Qi Jian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第2期22-33,共12页
Cu/ZnO is widely used in the hydrogenation of carbon dioxide (CO_(2)) to methanol (CH_(3)OH) to improve the lowconversion rate and selectivity generally observed. In this work, a series of In, Zr, Co, and Ni-doped CuO... Cu/ZnO is widely used in the hydrogenation of carbon dioxide (CO_(2)) to methanol (CH_(3)OH) to improve the lowconversion rate and selectivity generally observed. In this work, a series of In, Zr, Co, and Ni-doped CuO-ZnO catalysts wassynthesized via a hydrothermal method. By introducing a second metal element, the activity and dispersion of the activesites can be adjusted and the synergy between the metal and the carrier can be enhanced, forming an abundance of oxygenvacancies. Oxygen vacancies not only adsorb CO_(2) but also activate the intermediates in methanol synthesis, playing a keyrole in the entire reaction. Co3O4-CuO-ZnO had the best catalytic performance (a CO_(2) conversion rate of 9.17%;a CH_(3)OHselectivity of 92.77%). This study describes a typical strategy for multi-component doping to construct a catalyst with anabundance of oxygen vacancies, allowing more effective catalysis to synthesize CH_(3)OH from CO_(2). 展开更多
关键词 CuO-ZnO catalyst CO_(2)hydrogenation to CH_(3)OH doping oxygen vacancy SYNERGY
下载PDF
Dimethyl ether synthesis from CO_2 hydrogenation on La-modified CuO-ZnO-Al_2O_3 /HZSM-5 bifunctional catalysts 被引量:7
10
作者 高文桂 王华 +2 位作者 王禹皓 郭伟 贾淼尧 《Journal of Rare Earths》 SCIE EI CAS CSCD 2013年第5期470-476,共7页
A series of CuO-ZnO-Al2O3-La2O3/HZSM-5 biftmctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared. The catalysts were characterized with N2 ads... A series of CuO-ZnO-Al2O3-La2O3/HZSM-5 biftmctional catalysts with various La loadings for dimethyl ether (DME) directly synthesized from CO2 hydrogenation were prepared. The catalysts were characterized with N2 adsorption-desorption, X-ray diffraction (XRD), H2 temperature-programmed reduction (H2-TPR), NH3 temperature-programmed desorption (NH3-TPD) and N2O titration techniques, and tested for the synthesis of DME directly from CO2 hydrogenation in a fixed-bed reactor. The results showed that the reducibility, dispersion ofbifunctional catalysts were strongly dependent on the addition of La. With the addition of appropri- ate amount of La, the crystaUite size of CuO was decreased and the dispersion of Cu on the surface was enhanced, which resulted in the increased conversion of CO2. It was also found that the selectivity to DME was related to the intensity and amount of strong acid site on the catalyst surface. The presence of La favored the production of DME, and the optimum catalytic activity was obtained when the amount of La was 2.0 wt.%. 展开更多
关键词 CO2 hydrogenation DME bifunctional catalyst LANTHANUM rare earths
原文传递
Engineering Cu^(+)/CeZrO_(x) interfaces to promote CO_(2) hydrogenation to methanol 被引量:4
11
作者 Jingpeng Zhang Xiaohang Sun +4 位作者 Congyi Wu Wenquan Hang Xu Hu Dawei Qiao Binhang Yan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期45-53,I0002,共10页
Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield ... Cu-based catalysts are widely employed for CO_(2) hydrogenation to methanol,which is expected as a promising process to achieving carbon neutrality.However,most Cu-based catalysts still suffer from low methanol yield with a passable CO_(2) conversion and lack insight into its reaction mechanism for guiding the design of catalysts.In this work,Cu^(+)/CeZrO_(x) interfaces are engineered by employing a series of ceria-zirconia solid solution catalysts with various Ce/Zr ratios,forming a Cu^(+)-O_(v)-Ce^(3+)structure where Cu^(+)atoms are bonded to the oxygen vacancies(O_(v))of ceria.Compared to Cu/CeO_(2) and Cu/ZrO_(2),the optimized catalyst(i.e.,Cu_(0.3)Ce_(0.3)Zr_(0.7))exhibits a much higher mass-specific methanol formation rate(192g_(MeOH)/kg_(cat)/h)at 240℃and 3 MPa.Through a series of in-situ and ex-situ characterization,it is revealed that oxygen vacancies in solid solutions can effectively assist the activation of CO_(2) and tune the electronic state of copper to promote the formation of Cu^(+)/CeZrO_(x) interfaces,which stabilizes the key*CO intermediate,inhibits its desorption and facilitates its further hydrogenation to methanol via the reverse watergas-shift(RWGS)+CO-Hydro pathway.Therefore,the concentration of*CO or the apparent Cu^(+)/(Cu^(+)+Cu^(0))ratio could be employed as a quantitative descriptor of the methanol formation rate.This work is expected to give a deep insight into the mechanism of metal/support interfaces in CO_(2) hydrogenation to methanol,offering an effective strategy to develop new catalysts with high performance. 展开更多
关键词 CO_(2)hydrogenation Methanol synthesis In-situ characterization Cu^(+)/CeZrO_(x)interfaces Oxygen vacancies
下载PDF
Morphology and activity relationships of macroporous CuO-ZnO-ZrO_2 catalysts for methanol synthesis from CO_2 hydrogenation 被引量:1
12
作者 Yu-Hao Wang Wen-Gui Gao +3 位作者 Hua Wang Yan-E Zheng Kong-Zhai Li Ru-Gui Ma 《Rare Metals》 SCIE EI CAS CSCD 2016年第10期790-796,共7页
A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, ... A series of macroporous CuO-ZnO-ZrO2 (CZZ) catalysts with different Zn/Zr ratios were successfully prepared by template method and characterized by X-ray diffraction (XRD), N2 adsorption, reactive N2O adsorption, scanning electron microscopy (SEM), H2 temperature-pro- grammed reduction (H2-TPR), and transmission electron microscopy (TEM). The activity of the catalysts was tested for methanol synthesis from CO2 hydrogenation. It is found that the increase in the Zn/Zr ratio could lead to the sintering of the catalysts, destroying the macroporous structure integrity. The macroporous CZZ catalysts own lower Zn/Zr ratio, exhibiting a better morphology and activity. For comparison, the conventional nonporous CZZ catalysts were also investigated. The results show that the CZZ catalysts with macroporous structure own smaller particles, higher CO2 conversion, and CH3OH yield. It reveals that the macroporous structure could inhibit the growth of the par- ticle size, and the special porous structure is favorable for diffusion and penetration of CO2, which could improve the catalytic activities. 展开更多
关键词 Macroporous structure CuO-ZnO-ZrO2 catalysts CO2 hydrogenation METHANOL Activity
原文传递
Boosting CO_(2) hydrogenation to high-value olefins with highly stable performance over Ba and Na co-modified Fe catalyst 被引量:2
13
作者 Joshua Iseoluwa Orege Na Liu +3 位作者 Cederick Cyril Amoo Jian Wei Qingjie Ge Jian Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第5期614-624,I0014,共12页
CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and main... CO_(2)hydrogenation has been considered to be a highly promising route for the production of high-value olefins(HVOs)while also mitigating CO_(2)emissions.However,it is challenging to achieve high selectivity and maintain stable performance for HVOs(ethylene,propylene,and linear a-olefins)over a prolonged reaction time due to the difficulty in precise control of carbon coupling and rapid catalyst deactivation.Herein,we present a selective Ba and Na co-modified Fe catalyst enriched with Fe_(5)C_(2)and Fe_(3)C active sites that can boost HVO synthesis with up to 66.1%selectivity at an average CO_(2)conversion of 38%for over 500 h.Compared to traditional NaFe catalyst,the combined effect of Ba and Na additives in the NaBaFe-0.5 catalyst suppressed excess oxidation of FeCxsites by H_(2)O.The absence of Fe3O4phase in the spent NaBaFe-0.5 catalyst reflects the stabilization effect of the co-modifiers on the FeCxsites.This study provides a strategy to design Fe-based catalysts that can be scaled up for the stable synthesis of HVOs from CO_(2)hydrogenation. 展开更多
关键词 CO_(2)hydrogenation High-value olefins Barium additive Iron carbide Catalytic stability
下载PDF
Proximity Effect of Fe-Zn Bimetallic Catalysts on CO_(2) Hydrogenation Performance 被引量:2
14
作者 Shengkun Liu Qiao Zhao +5 位作者 Xiaoxue Han Chongyang Wei Haoting Liang Yidan Wang Shouying Huang Xinbin Ma 《Transactions of Tianjin University》 EI CAS 2023年第4期293-303,共11页
The interaction between a promoter and an active metal crucially impacts catalytic performance.Nowadays,the influence of promoter contents and species has been intensively considered.In this study,we investigate the e... The interaction between a promoter and an active metal crucially impacts catalytic performance.Nowadays,the influence of promoter contents and species has been intensively considered.In this study,we investigate the effect of the iron(Fe)-zinc(Zn)proximity of Fe-Zn bimetallic catalysts on CO_(2)hydrogenation performance.To eliminate the size effect,Fe_(2)O_(3)and ZnO nanoparticles with uniform size are first prepared by the thermal decomposition method.By changing the loading sequence or mixing method,a series of Fe-Zn bimetallic catalysts with different Fe-Zn distances are obtained.Combined with a series of characterization techniques and catalytic performances,Fe-Zn bimetallic proximity for compositions of Fe species is discussed.Furthermore,we observe that a smaller Fe-Zn distance inhibits the reduction and carburization of the Fe species and facilitates the oxidation of carbides.Appropriate proximity of Fe and Zn(i.e.,Fe_1Zn_(1)-imp and Fe_(1)Zn_(1)-mix samples)results in a suitable ratio of the Fe_5C_(2)and Fe_(3)O_(4)phases,simultaneously promoting the reverse water-gas shift and Fischer-Tropsch synthesis reactions.This study provides insight into the proximity effect of bimetallic catalysts on CO_(2)hydrogenation performance. 展开更多
关键词 CO_(2)hydrogenation Fe-based catalyst PROMOTER Proximity effect
下载PDF
Ameliorating the re/dehydrogenation behaviour of MgH2 by zinc titanate addition 被引量:2
15
作者 N.A.Ali N.A.Sazelee +4 位作者 M.F.Md Din M.M.Nasef A.A.Jalil Haizen Liu M.Ismail 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2205-2215,共11页
Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Her... Magnesium hydride(MgH_(2))is the most feasible and effective solid-state hydrogen storage material,which has excellent reversibility but initiates decomposing at high temperatures and has slow kinetics performance.Here,zinc titanate(Zn_(2)TiO_(4))synthesised by the solid-state method was used as an additive to lower the initial temperature for dehydrogenation and enhance the re/dehydrogenation behaviour of MgH_(2).With the presence of Zn_(2)TiO_(4),the starting temperature for the dehydrogenation of MgH_(2)was remarkably lowered to around 290℃–305℃.In addition,within 300 s,the MgH_(2)–Zn_(2)TiO_(4)sample absorbed 5.0 wt.%of H_(2)and 2.2–3.6 wt.%H_(2)was liberated from the composite sample in 30 min,which is faster by 22–36 times than as-milled MgH_(2).The activation energy of the MgH_(2)for the dehydrogenation process was also downshifted to 105.5 k J/mol with the addition of Zn_(2)TiO_(4)indicating a decrease of 22%than as-milled MgH_(2).The superior behaviour of MgH_(2)was due to the formation of Mg Zn_(2),MgO and MgTiO_(3),which are responsible for ameliorating the re/dehydrogenation behaviour of MgH_(2).These findings provide a new understanding of the hydrogen storage behaviour of the catalysed-MgH_(2)system. 展开更多
关键词 Hydrogen storage Solid-state storage MgH_(2) ADDITIVE Zn_(2)TiO_(4)
下载PDF
CO_2 HYDROGENATION OVER SiO_2-SUPPORTED HETEROBINUCLEAR METAL COMPLEX CATALYSTS
16
作者 Chang Ping SHAO (Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Dalian 116023) 《Chinese Chemical Letters》 SCIE CAS CSCD 1995年第12期1081-1082,共2页
The SiO2-Supported (PPh3)2HPt(μ-CO) (μ-PPh2)M(CO) 4 (M-Cr.Mo, W) complel catalysts catalyzing CO2 hydrogenation are reported.The catalysts exhibited high catalytic activity and selectivity toward oxygenates
关键词 SiO2 OVER SUPPORTED HETEROBINUCLEAR hydrogenation METAL CO2 CATALYSTS 二氧化碳
下载PDF
Effects of zinc on χ-Fe_(5)C_(2) for carbon dioxide hydrogenation to olefins:Insights from experimental and density function theory calculations 被引量:1
17
作者 Xianglin Liu Minjie Xu +2 位作者 Chenxi Cao Zixu Yang Jing Xu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第2期206-214,共9页
Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum ... Production of light olefins from CO_(2), the primary greenhouse gases, is of great importance to mitigate the adverse effects of CO_(2) emission on environment and to supply the value-added products from nonpetroleum resource. However, development of robust catalyst with controllable selectivity and stability remains a challenge. Herein, we report that Zn-promoted Fe catalyst can boost the stable and selective production of light olefins from CO_(2). Specifically, the Zn-promoted Fe exhibits a highly stable activity and olefin selectivity over 200 h time-on-stream compared to the unpromoted Fe catalyst, primarily owing to the preservation of active χ-Fe_(5)C_(2) phase. Structural characterizations of the spent catalysts suggest that Zn substantially regulates the content of iron carbide on the surface and suppresses the reoxidation of bulk iron carbide during the reaction. DFT calculations confirm that adsorption of surface carbon atoms and graphene-like carbonaceous species are not thermochemically favored on Zn-promoted Fe catalyst. Carbon deposition by CAC coupling reactions of two surface carbon atoms and dehydrogenation of CH intermediate are also inhibited. Furthermore, the effects of Zn on antioxidation of iron carbide were also investigated. Zn favored the hydrogenation of surface adsorbed oxygen atoms to H_(2)O and the desorption of H_(2)O, which reduces the possibility of surface carbide being oxidized by the chemisorbed oxygen. 展开更多
关键词 Reaction engineering χ-Fe_(5)C_(2) Zn promoter Carbon dioxide hydrogenation Density function theory
下载PDF
二氧化碳-水-岩作用机理及微观模拟方法研究进展 被引量:2
18
作者 张烈辉 张涛 +6 位作者 赵玉龙 胡浩然 文绍牧 吴建发 曹成 汪永朝 范云婷 《石油勘探与开发》 EI CSCD 北大核心 2024年第1期199-211,共13页
系统综述CO_(2)-水-岩复杂作用机理、多孔介质反应输运(溶解、沉淀及沉淀运移)微观模拟、CO_(2)-水-岩系统微观模拟3个方面的研究进展,指出目前研究存在的主要问题并提出了关于未来研究方向的建议。CO_(2)注入储集层后,不仅存在常规渗... 系统综述CO_(2)-水-岩复杂作用机理、多孔介质反应输运(溶解、沉淀及沉淀运移)微观模拟、CO_(2)-水-岩系统微观模拟3个方面的研究进展,指出目前研究存在的主要问题并提出了关于未来研究方向的建议。CO_(2)注入储集层后,不仅存在常规渗流体系的流动和传质作用,还会产生溶解、沉淀及沉淀运移等特殊物理化学现象,其耦合作用导致多孔介质的孔渗参数变化规律复杂。孔隙尺度的微观渗流模拟,可以得到孔喉三维空间内的详细信息,且能显性观察到多孔介质流-固界面随反应的变化。目前研究主要在复杂作用机理解耦合、多矿物差异性反应表征、沉淀生成机理及表征(晶体成核和矿物脱落)、沉淀-流体相互作用模拟方法、多物理化学过程耦合渗流机制等方面存在局限。未来研究中,需要创新实验方法对“溶解—沉淀—沉淀运移”解耦合,提高矿物地球化学反应相关参数实验测试的准确度,在不同沉淀机理可靠表征的基础上,建立沉淀-流体相互作用模拟方法,并有机耦合各个物理化学过程,最终实现对CO_(2)-水-岩系统中“溶解—沉淀—沉淀运移”的耦合渗流模拟。 展开更多
关键词 CO_(2)-水-岩系统 溶解 沉淀 沉淀运移 微观模拟 CO_(2)捕集、利用与埋存 碳中和 解耦合
下载PDF
煤矿充填固碳理论基础与技术构想 被引量:3
19
作者 刘浪 方治余 +12 位作者 王双明 高过斌 张波 赵玉娇 朱梦博 刘志超 王晶钰 周静 李艳 王美 张小艳 ZHOU Song 贾奇锋 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第2期292-308,共17页
在国家“双碳”目标背景下,如何减少煤炭行业的碳排放、实现碳封存已成为亟待解决的难题。煤炭行业作为高碳化石能源生产者和主体碳排放源提供者,在生产和消费过程中引发的大宗固废堆存、大型采空区形成和大量CO_(2)排放是制约煤炭可持... 在国家“双碳”目标背景下,如何减少煤炭行业的碳排放、实现碳封存已成为亟待解决的难题。煤炭行业作为高碳化石能源生产者和主体碳排放源提供者,在生产和消费过程中引发的大宗固废堆存、大型采空区形成和大量CO_(2)排放是制约煤炭可持续开发利用与绿色健康发展的瓶颈所在。为协同解决二氧化碳封存与矿山固废消纳问题,将大宗固废处置、固废高值化利用、CO_(2)封存、采空区利用有机结合,提出了二氧化碳充填的理念,从碳汇能力评估角度界定了二氧化碳充填的3种类型。具体开展工作包括:①分析了CO_(2)充填料浆输运过程和矿化反应过程涉及到的基础理论,给出了各个过程的数学方程以及碳封存量计算公式,指出了温度、湿度等因素对矿化反应机理、碳封存量和充填体强度的影响规律。②总结了现阶段CO_(2)矿化的工艺方法、主要碱性工业固废的CO_(2)封存能力和CO_(2)矿化强化措施。在此基础上提出了基于直接湿法矿化和间接矿化的2种CO_(2)充填材料制备工艺,满足矿井充填的流动性、凝固特性和强度要求。③针对CO_(2)充填过程中的CO_(2)物理封存问题,提出了窄条带式胶结充填和综采架后胶结充填2种技术路径,前者通过在弱充填条带中构筑多贯通孔隙的充填体CO_(2)物理封存,后者借助充填支架和链式自行充填挡板在长壁工作面采空区中间断构筑充填带,控制顶板垮落,形成CO_(2)物理化学封存空间。④为了评估CO_(2)充填的碳平衡效果,依据全生命周期法界定了CO_(2)充填中碳足迹及碳消纳的计算边界。然后,梳理了CO_(2)充填过程中的碳足迹及碳消纳,分别考虑了CO_(2)的来源、用量、损耗、转化等因素。给出了包括原料运输、充填料浆制备、井下注入与充填等过程中的碳足迹及碳消纳计算方法。研究成果有望降低CO_(2)封存的能耗及成本,对煤炭绿色开采及其可持续开发利用具有深远的意义。 展开更多
关键词 CO_(2)封存 间断充填 充填固碳 碳足迹 碳消纳
下载PDF
三河尖关闭煤矿煤层CO_(2)封存潜力研究 被引量:2
20
作者 钱静 易高峰 +4 位作者 周琦忠 汤志刚 彭一轩 王阳 陈尚斌 《煤炭科学技术》 EI CAS CSCD 北大核心 2024年第3期258-268,共11页
关闭煤矿煤层CO_(2)地质封存是CO_(2)封存的重要方式之一,也是短期内实现碳减排指标的有效手段之一。以江苏省徐州市三河尖关闭煤矿为例,分析了已采7号煤和9号煤的煤岩煤质特征,统计了剩余煤炭资源储量,运用模糊综合评价法,选取了稳定... 关闭煤矿煤层CO_(2)地质封存是CO_(2)封存的重要方式之一,也是短期内实现碳减排指标的有效手段之一。以江苏省徐州市三河尖关闭煤矿为例,分析了已采7号煤和9号煤的煤岩煤质特征,统计了剩余煤炭资源储量,运用模糊综合评价法,选取了稳定系数、上覆岩层性质、地质构造复杂程度、地下水指标、封存煤层压温比、封存煤层深厚比、封存煤层渗透率、采空塌陷程度和其他因素等9个主要影响因素指标对7号煤和9号煤封存CO_(2)稳定性进行评价,建立关闭煤矿煤层CO_(2)封存评价方法并评估CO_(2)封存潜力。结果表明,三河尖关闭煤矿7号煤和9号煤剩余储量较大,CO_(2)封存稳定性综合评价结果分别为86.209和87.698,评价等级均为较稳定,封存潜力较高。根据建立的关闭煤矿煤层CO_(2)封存评价方法,计算获得三河尖关闭煤矿7号和9号煤层CO_(2)理论封存量分别为207.6 Mt和80.9 Mt,并据此划分封存有利区为有利区、较有利区和不利区3个等级。研究可为关闭煤矿煤层CO_(2)封存研究提供基础依据。 展开更多
关键词 关闭煤矿 煤层CO_(2)封存 稳定性评价 封存潜力 三河尖煤矿 碳封存
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部