Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In t...Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate.展开更多
Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in...Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL-L-1 and 700 μL-L-1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs of Pin us koreaipsis and Pinus syvestriformis seedfings increased with the rising of CO2 concentration, while that of Phellodron amurense and haus mandshurica increased at some time and decreased at another time.展开更多
The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate(NGH)reservoirs,primarily due to the low productivity of wells and the high operational costs involved.The p...The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate(NGH)reservoirs,primarily due to the low productivity of wells and the high operational costs involved.The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO_(2)swapping technique.The present study expands the research scope of the authors beyond their previous publication,which exclusively examined the generation of methane from marine gas hydrates.Specifically,the current investigation explores the feasibility of utilizing the void spaces created by the extracted methane in the hydrate reservoir for carbon dioxide storage.Analytical models were employed to forecast the heat transfer from a geothermal zone to an NGH reservoir.A study was conducted utilizing data obtained from a reservoir situated in the Shenhu region of the Northern South China Sea.The findings of the model indicate that the implementation of geothermal heating can lead to a substantial enhancement in the productivity of wells located in heated reservoirs during CO_(2)swapping procedures.The non-linear relationship between the temperature of the heated reservoir and the rate of fold increase has been observed.It is anticipated that the fold of increase will surpass 5 when the gas hydrate reservoir undergoes a temperature rise from 6℃ to 16℃.The mathematical models utilized in this study did not incorporate the impact of heat convection resulting from CO_(2)flow into the gas reservoir.This factor has the potential to enhance well productivity.The mathematical models’deviation assumptions may cause over-prediction of well productivity in geothermal-stimulated reservoirs.Additional research is required to examine the impacts of temperature drawdown,heat convection resulting from depressurization,heat-induced gas pressure increment,and the presence of free gas in the formation containing hydrates.The process of CH4-CO_(2)swapping,which has been investigated,involves the utilization of geothermal stimulation.This method is highly encouraging as it enables the efficient injection of CO_(2)into gas hydrate reservoirs,resulting in the permanent sequestration of CO_(2)in a solid state.Additional research is warranted to examine the rate of mass transfer of CO_(2)within reservoirs of gas hydrates.展开更多
Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have bee...Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research.展开更多
Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchang...Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.展开更多
Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyz...Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.展开更多
Splitting water or reducing CO_(2) via semiconductor photocatalysis to produce H2 or hydrocarbon fuels through the direct utilization of solar energy is a promising approach to mitigating the current fossil fuel energ...Splitting water or reducing CO_(2) via semiconductor photocatalysis to produce H2 or hydrocarbon fuels through the direct utilization of solar energy is a promising approach to mitigating the current fossil fuel energy crisis and environmental challenges.It enables not only the realization of clean,renewable,and high-heating-value solar fuels,but also the reduction of CO_(2) emissions.Layered double hydroxides(LDHs)are a type of two-dimensional anionic clay with a brucite-like structure,and are characterized by a unique,delaminable,multidimensional,layered structure;tunable intralayer metal cations;and exchangeable interlayer guest anions.Therefore,it has been widely investigated in the fields of CO_(2) reduction,photoelectrocatalytic water oxidation,and water photolysis to produce H2.However,the low carrier mobility and poor quantum efficiency of pure LDH limit its application.An increasing number of scholars are exploring methods to obtain LDH-based photocatalysts with high energy conversion efficiency,such as assembling photoactive components into LDH laminates,designing multidimensional structures,or coupling different types of semiconductors to construct heterojunctions.This review first summarizes the main characteristics of LDH,i.e.,metal-cation tunability,intercalated guest-anion substitutability,thermal decomposability,memory effect,multidimensionality,and delaminability.Second,LDHs,LDH-based composites(metal sulfide-LDH composites,metal oxide-LDH composites,graphite phase carbon nitride-LDH composites),ternary LDH-based composites,and mixed-metal oxides for splitting water to produce H_(2) are reviewed.Third,graphite phase carbon nitride-LDH composites,MgAl-LDH composites,CuZn-LDH composites,and other semiconductor-LDH composites for CO_(2) reduction are introduced.Although the field of LDH-based photocatalysts has advanced considerably,the photocatalytic mechanism of LDHs has not been thoroughly elucidated;moreover,the photocatalytic active sites,the synergy between different components,and the interfacial reaction mechanism of LDH-based photocatalysts require further investigation.Therefore,LDH composite materials for photocatalysis could be developed through structural regulation and function-oriented design to investigate the effects of different components and interface reactions,the influence of photogenerated carriers,and the impact of material composition on the physical and chemical properties of the LDH-based photocatalyst.展开更多
A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and C...A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering.展开更多
Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of str...Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.展开更多
The discovery of novel electrode materials promises to unleash a number of technological advances in lithium-ion batteries.V2O5 is recognized as a high-performance cathode that capitalizes on the rich redox chemistry ...The discovery of novel electrode materials promises to unleash a number of technological advances in lithium-ion batteries.V2O5 is recognized as a high-performance cathode that capitalizes on the rich redox chemistry of vanadium to store lithium.To unlock the full potential of V2O5,nanotechnology solution and rational electrode design are used to imbue V2O5 with high energy and power density by addressing some of their intrinsic disadvantages in macroscopic crystal form.Here,we demonstrate a facile and environmental-friendly method to prepare nanorods-constructed 3D porous V2O5 architectures(3 D-V2O5)in large-scale.The 3D porous architecture is found to be responsible for the enhanced charge transfer kinetics and Li-ion diffusion rate of the 3D-V2O5 electrode.As the result,the 3D-V2O5 surpasses the conventional bulk V2O5 by showing enhanced discharge capacity and rate capability(delivering 154 and 127 m Ah g^-1 at 15 and 20 C,respectively).展开更多
Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a ...Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes.展开更多
Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditio...Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditions that sometimes result in unsatisfactory efficiencies or selectivities.Pulse electrolysis by pulsating and programming the potentials/currents can feature unique tunability to the electrodeelectrolyte interface properties that can give rise to drastically different electrochemical behaviors compared to the steady-state counterparts.Although invented almost 100 years ago,pulse electrolysis has received little attention over the period,but has recently attracted a revived focus toward the energyefficient electrolysis.This review will summarize the history and recent efforts of pulse electrolysis in three categories:water electrolysis,CO_(2)electrolysis and other electrolysis.In each section,the advantage of pulse electrolysis over steady-state electrolysis will be discussed in detail,giving a comprehensive overview of the pulse effect on the electrolytic systems.Finally,we will provide our vision of future directions in pulse electrolysis based on previous works.展开更多
To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products hav...To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products have been gaining increasing interest.Cu-based CO_(2)reduction catalysts have attracted widespread attention owing to their capability of generating C1 and C_(2+)products.However,Cu-based catalysts are highly challenged by their low product selectivity.Recently,Cu-based bimetallic catalysts have been found the unique catalytical activity and selectivity in CO_(2)reduction reactions(CO_(2)RR).The incorporation of other metals can change the electronic circumstance of Cu-based catalysts,promoting the adsorption ability of the intermediate products and consequently leading to high selectivity.In this minireview,we intend to summarize recent advances of Cu-based bimetallic catalysts in producing C1 and C_(2+)products,involving designing heterostructure,alloy,defects and surface modification engineering.We pay special attention to the regulation of electronic structure of the composite catalysts,as well as insights into the relationship between electronic property and catalytical performance for Cu-based bimetallic catalysts.展开更多
Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold a...Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold advantages:reduction in CO_(2)emission and production of artificial natural gas(methane)at the same time.In this paper,comparative energy,economic and environmental assessment of such photocatalytic methane production has been carried out between Japan and Malaysian conditions.Assumptions on the photocatalytic methane production plant and estimation of energy production,CO_(2)emission reduction,and economic indicators are made based on previous research and existing technologies.Energy analysis shows that Malaysia has a higher potential for energy production and CO_(2)emission reduction than Japan.Economic analysis reveals that the feasible reaction efficiencies of the plant in Japan and Malaysia are 8%.The slightly higher conversion efficiency in Malaysia is due to the energy price and CO_(2)tax.For the implementation of the photocatalytic methane production plant,the high energy price and CO_(2)tax will work as a driving force.展开更多
Steel making is energy and material intensive.That is why steel is always demonized and confronted with incriminations and requirements for reduction of its environmental impact.Those pure demands-like for emission tr...Steel making is energy and material intensive.That is why steel is always demonized and confronted with incriminations and requirements for reduction of its environmental impact.Those pure demands-like for emission trading are short-sighted as they do not base on an integrated approach.Instead they merely consider CO_2 emissions during the production process.A forward-looking,global climate and environmental policy needs a sustainable life cycle approach.Therefore it must for example also take into account the contribution of steel towards cutting emissions in its application-in the energy.automotive and household sectors.Steel will play a key role in climate protection. One-third of the remaining CO_2 reduction target planned in Germany by 2020 can only be achieved with the help of innovative steel products and their applications.This is the conclusion of an independent study by The Boston Consulting Group(BCG) on behalf of Steel Institute VDEh,and German Steel Federation.The study compares CO_2 savings from important innovative steel applications(such as more efficient power stations,wind turbines,or lighter vehicles) with CO_2 emissions caused by steel production. By adopting this comprehensive perspective,the study for the first time provides a CO_2 balance for the material steel by comparing the CO_2 reductions made possible through innovative steel applications with the CO_2 emissions resulting from steel production.The balance was calculated on the basis of eight selected innovative steel applications in Germany for the period 2007 to 2020,whereby the CO_2 emissions caused by steel production were considered throughout the entire life cycle of the particular steel use.For the selected examples,the use of innovative steels resulted in a total savings potential of 74 Mt of CO_2 in 2020.The calculations are based on conservative assumptions;for example without counting of potentials by exported steel or by comparison with competitive materials. The production of steel in Germany,including the extraction of raw materials,transports and further processing, causes annual emissions of approx.67 Mt CO_2 This can be more than compensated by the above mentioned CO_2 savings.The balance is even more positive if one only considers the emissions of about 12 Mt/a CO_2 caused by the selected eight steel applications.Innovative steel use thus saves six times as much CO_2 as is generated by its production. Steel is part of the story and helps to achieve CO_2 reduction targets.On this basis the steel industry should start up with a new global approach to be accepted as a CO_2 killer,too,instead of being the devil.This needs a political discussion on an integrated approach taking into account the whole life cycle,which finally can lead away from stringent emission caps or incompatible emissions trading systems for the different regions.展开更多
In the automatic CO_2 arc welding, the alteration of the vertical distance between the welding torch and the workpiece has a strong effect on the welding parameters such as welding current and voltage, with the result...In the automatic CO_2 arc welding, the alteration of the vertical distance between the welding torch and the workpiece has a strong effect on the welding parameters such as welding current and voltage, with the result that the appearance and quality of weld are not steady. To weaken the influence of the distance alteration, a method is put forward in the paper. The method is that the alternate wire-feed control is used for compensating the welding current. On the basis of theoretical analysis, a static numerical model for alternate wire-feed control is established. The experiments show that the model-based regulation of the wire feed rate can compensate the welding current and ensure the appearance of weld. When the alteration of vertical distance between the torch and the workpiece is greater, not only is the wire feed rate regulated, but the output voltage of the power source is adjusted to ensure the appearance and quality of weld.展开更多
The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy produc...The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy production rate and field synergy factor.The results show that both heat transfer and entropy production unit number in four tubes decrease with water temperature increasing.Heat transfer and entropy production unit number in multiple tubes( i. e.,triple straight tube and double helix tube) is higher than their single counterparts; the non-dimensional entropy production rate increases with water temperature. Non-dimensional entropy production rate of triple straight tube and double helix tube is far below the single tube. Field synergy factor of double helix tube is much higher than that of the triple straight tube under the same condition. Further experiment was carried out in double helix tube,under various CO_2 pressure and inlet water temperature,the results are analyzed and reported in this paper.展开更多
In recent years, interest in hydrogen as a fuel has sharply increased in the field of alternative and green energy due to its high energy capability and zero-emission behaviour. As a result, research in the developmen...In recent years, interest in hydrogen as a fuel has sharply increased in the field of alternative and green energy due to its high energy capability and zero-emission behaviour. As a result, research in the development of new highly efficient methods for producing high-purity hydrogen is relevant. This paper presents, for the first time, the test results of an electrochemical cell with a proton-conducting La_(0.9)Sr_(0.1)ScO_(3-δ) electrolyte and symmetrical Sr_(1.95)Fe_(1.4)Ni_(0.1)Mo_(0.5)O_(6-δ)+ La_(0.9)Sr_(0.1)Sc_(0.9)Co_(0.1)O_(3-δ) electrodes as a hybrid setup for electricity generation in proton ceramic fuel cell mode, for hydrogen separation from H_(2)+ Ar mixture and the production of high-purity hydrogen from methane with simultaneous CO_(2) utilization.It was found that this electrochemical cell generates high flow rates of hydrogen during its separation through a proton-conducting membrane from H_(2)+ Ar mixture, about 500 cm^(3)h^(-1)cm^(-2)at a current density of 0.6 A cm^(-2)as well as about 370 cm^(3) h^(-1)cm^(-2)at a current density of 0.5 A cm^(-2) from CH_(4)+ CO_(2) mixture at 800 ℃ which shows that these cells are promising for hydrogen production.展开更多
Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily...Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily be adapted into the photobioreactor system engineering. In this research, the type of microalgae which is used is Chlorella vulgaris in Benneck medium. The system of used reactor is mid-scale bubble column photobioreactor flowed by air which contains 5% CO2. Chlorella vulgaris biomass production will be increased by adjusting the cell density in the photobioreactor. These arrangements will be implemented through a continuous treatment of cell entrapment. The arrangement of cell density in continuous reactor has been proven to increase production of Chlorella vulgaris biomass about 1.25 times more than cultivation without arrangement of cell density by using the same number of inoculums. The results also have shown that the average rate of CO2 fixation and Carbon Transfer Rate (CTR) are obtained at cell entrapment condition about 17 times larger. Continuous cellular entrapment method is very potential to be developed as a method for the production of biomass. Lipids and carotene that have been produced from Ch. vulgaris respectively are 18.24% and 9.42 ppm.展开更多
基金financially supported by the National Natural Science Foundation of China,China(22378424,52004136,22127812,U20B6005)the Science Foundation of China University of Petroleum Beijing(2462023BJRC017)Hunan Provincial Department of Education Scientific Research Project(22B0310).
文摘Carbon emission reduction and clean energy development are urgent demands for mankind in the coming decades.Exploring an efficient CO_(2) storage method can significantly reduce CO_(2) emissions in the short term.In this study,we attempted to construct sediment samples with different residual CH_(4) hydrate amounts and reservoir conditions,and then investigate the potentials of both CO_(2) storage and enhanced CH_(4) recovery in depleted gas hydrate deposits in the permafrost and ocean zones,respectively.The results demonstrate that CO_(2) hydrate formation rate can be significantly improved due to the presence of residual hydrate seeds;However,excessive residual hydrates in turn lead to the decrease in CO_(2) storage efficiency.Affected by the T-P conditions of the reservoir,the storage amount of liquid CO_(2) can reach 8 times that of gaseous CO_(2),and CO_(2) stored in hydrate form reaches 2-4 times.Additionally,we noticed two other advantages of this method.One is that CO_(2) injection can enhance CH_(4) recovery rate and increases CH_(4) recovery by 10%-20%.The second is that hydrate saturation in the reservoir can be restored to 20%-40%,which means that the solid volume of the reservoir avoids serious shrinkage.Obviously,this is crucial for protecting the goaf stability.In summary,this approach is greatly promising for high-efficient CO_(2) storage and safe exploitation of gas hydrate.
文摘Net photosynthetic rates (NPRs) of four species seedlings, Pinus koraiensis, Ptrius Syvestriformis,Fraxinus mandshuthe and Phellodendron amurense, were measured at different CO2 concentrations and time respectively in Changbai Mountain during the growing season in 1999. The seedlings were cultivated in open-top chambers (OTCs), located outdoors and exposed to natural sunlight. The experimental objects were divided into four groups by tree species. CO2 concentrations in chambers were kept at 500 μL-L-1 and 700 μL-L-1 and contrast chamber and contrast field were set. The results showed that the effects of elevated CO2 on NPR of the trees strongly depended on tree species and time. NPRs of Pin us koreaipsis and Pinus syvestriformis seedfings increased with the rising of CO2 concentration, while that of Phellodron amurense and haus mandshurica increased at some time and decreased at another time.
基金funding the project“Safe,Sustainable,and Resilient Development of Offshore Reservoirs and Natural Gas Upgrading through Innovative Science and Technology:Gulf of Mexico–Mediterranean,”through Contract No.EC-19 Fossil Energy。
文摘The energy industry faces a significant challenge in extracting natural gas from offshore natural gas hydrate(NGH)reservoirs,primarily due to the low productivity of wells and the high operational costs involved.The present study offers an assessment of the feasibility of utilizing geothermal energy to augment the production of natural gas from offshore gas hydrate reservoirs through the implementation of the methane-CO_(2)swapping technique.The present study expands the research scope of the authors beyond their previous publication,which exclusively examined the generation of methane from marine gas hydrates.Specifically,the current investigation explores the feasibility of utilizing the void spaces created by the extracted methane in the hydrate reservoir for carbon dioxide storage.Analytical models were employed to forecast the heat transfer from a geothermal zone to an NGH reservoir.A study was conducted utilizing data obtained from a reservoir situated in the Shenhu region of the Northern South China Sea.The findings of the model indicate that the implementation of geothermal heating can lead to a substantial enhancement in the productivity of wells located in heated reservoirs during CO_(2)swapping procedures.The non-linear relationship between the temperature of the heated reservoir and the rate of fold increase has been observed.It is anticipated that the fold of increase will surpass 5 when the gas hydrate reservoir undergoes a temperature rise from 6℃ to 16℃.The mathematical models utilized in this study did not incorporate the impact of heat convection resulting from CO_(2)flow into the gas reservoir.This factor has the potential to enhance well productivity.The mathematical models’deviation assumptions may cause over-prediction of well productivity in geothermal-stimulated reservoirs.Additional research is required to examine the impacts of temperature drawdown,heat convection resulting from depressurization,heat-induced gas pressure increment,and the presence of free gas in the formation containing hydrates.The process of CH4-CO_(2)swapping,which has been investigated,involves the utilization of geothermal stimulation.This method is highly encouraging as it enables the efficient injection of CO_(2)into gas hydrate reservoirs,resulting in the permanent sequestration of CO_(2)in a solid state.Additional research is warranted to examine the rate of mass transfer of CO_(2)within reservoirs of gas hydrates.
文摘Energy supply dominated by fossil energy has been and remains the main cause of carbon dioxide emissions,the major greenhouse gas leading to the current grave climate change challenges.Many technical pathways have been proposed to address the challenges.Carbon capture and utilization(CCU) represents one of the approaches and thermochemical CO_(2) splitting driven by thermal energy is a subset of the CCU,which converts the captured CO_(2) into CO and makes it possible to achieve closed-loop carbon recirculation.Redox-active catalysts are among the most critical components of the thermochemical splitting cycles and perovskites are regarded as the most promising catalysts.Here we review the latest advancements in thermochemical cycles based on perovskites,covering thermodynamic principles,material modifications,reaction kinetics,oxygen pressure control,circular strategies,and demonstrations to provide a comprehensive overview of the topical area.Thermochemical cycles based on such materials require the consideration of trade-off between cost and efficiency,which is related to actual material used,operation mode,oxygen removal,and heat recovery.Lots of efforts have been made towards improving reaction rates,conversion efficiency and cycling stability,materials related research has been lacking-a key aspect affecting the performance across all above aspects.Double perovskites and composite perovskites arise recently as a potentially promising addition to material candidates.For such materials,more effective oxygen removal would be needed to enhance the overall efficiency,for which thermochemical or electrochemical oxygen pumps could contribute to efficient oxygen removal as well as serve as means for inert gas regeneration.The integration of thermochemical CO_(2) splitting process with downstream fuel production and other processes could reduce costs and increase efficiency of the technology.This represents one of the directions for the future research.
基金National Natural Science Foundation of China via grant number 52174035,52304048China Postdoctoral Science Foundation(2022M722637)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(2022KYCX026).
文摘Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.
基金This work was funded by Ningxia Hui Autonomous Region Key Research and Development Project(2021BEF02004),Central Finance Forestry Reform and Development Fund“Forest Seed Cultivation”.
文摘Goji berry(Lycium barbarum L.)is substantially dependent on nitrogen fertilizer application,which can signifi-cantly enhance fruit yield and Goji berry industrial development in Ningxia,China.This study aimed to analyze the functions of differential nitrogen application rates including low(N1),medium(N2),and high(N3)levels in soil microbial community structure(bacterial and fungal)at 2 diverse soil depths(0-20,20-40 cm)through high-throughput sequencing technology by targeting 16S RNA gene and ITS1&ITS2 regions.All the observed physicochemical parameters exhibited significant improvement(p<0.05)with increased levels of nitrogen and the highest values for most parameters were observed at N2.However,pH decreased(p<0.05)gradually.The alpha and beta diversity analyses for bacterial and fungal communities’metagenome displayed more similarities than differences among all groups.The top bacterial and fungal phyla and genera suggested no obvious(p>0.05)differences among three group treatments(N1,N2,and N3).Furthermore,the functional enrichment analysis demonstrated significant(p<0.05)enrichment of quorum sensing,cysteine and methionine metabolism,and transcriptional machinery for bacterial communities,while various saprotrophic functional roles for fungal communities.Conclusively,moderately reducing the use of N-supplemented fertilizers is conducive to increasing soil nitrogen utilization rate,which can contribute to sustainable agriculture practices through improved soil quality,and microbial community structure and functions.
文摘Splitting water or reducing CO_(2) via semiconductor photocatalysis to produce H2 or hydrocarbon fuels through the direct utilization of solar energy is a promising approach to mitigating the current fossil fuel energy crisis and environmental challenges.It enables not only the realization of clean,renewable,and high-heating-value solar fuels,but also the reduction of CO_(2) emissions.Layered double hydroxides(LDHs)are a type of two-dimensional anionic clay with a brucite-like structure,and are characterized by a unique,delaminable,multidimensional,layered structure;tunable intralayer metal cations;and exchangeable interlayer guest anions.Therefore,it has been widely investigated in the fields of CO_(2) reduction,photoelectrocatalytic water oxidation,and water photolysis to produce H2.However,the low carrier mobility and poor quantum efficiency of pure LDH limit its application.An increasing number of scholars are exploring methods to obtain LDH-based photocatalysts with high energy conversion efficiency,such as assembling photoactive components into LDH laminates,designing multidimensional structures,or coupling different types of semiconductors to construct heterojunctions.This review first summarizes the main characteristics of LDH,i.e.,metal-cation tunability,intercalated guest-anion substitutability,thermal decomposability,memory effect,multidimensionality,and delaminability.Second,LDHs,LDH-based composites(metal sulfide-LDH composites,metal oxide-LDH composites,graphite phase carbon nitride-LDH composites),ternary LDH-based composites,and mixed-metal oxides for splitting water to produce H_(2) are reviewed.Third,graphite phase carbon nitride-LDH composites,MgAl-LDH composites,CuZn-LDH composites,and other semiconductor-LDH composites for CO_(2) reduction are introduced.Although the field of LDH-based photocatalysts has advanced considerably,the photocatalytic mechanism of LDHs has not been thoroughly elucidated;moreover,the photocatalytic active sites,the synergy between different components,and the interfacial reaction mechanism of LDH-based photocatalysts require further investigation.Therefore,LDH composite materials for photocatalysis could be developed through structural regulation and function-oriented design to investigate the effects of different components and interface reactions,the influence of photogenerated carriers,and the impact of material composition on the physical and chemical properties of the LDH-based photocatalyst.
基金Financial support from the "Spanish Ministry of Economy, Industry, and Competitiveness" (Project CTQ2016-75491-R)from Abengoa Researchthe Spanish Ministry of Economy, Industry, and Competitiveness for financial support through the Ramón y Cajal Program, Grant: RYC-2015-19230
文摘A novel gas-phase electrocatalytic cell containing a low-temperature proton exchange membrane(PEM)was developed to electrochemically convert CO_2into organic compounds.Two different Cu-based cathode catalysts(Cu and Cu–C)were prepared by physical vapor deposition method(sputtering)and subsequently employed for the gas-phase electroreduction of CO_2at different temperatures(70–90°C).The prepared electrodes Cu and Cu–C were characterized by X-ray diffraction(XRD),X-ray photoemission spectroscopy(XPS)and scanning electron microscopy(SEM).As revealed,Cu is partially oxidized on the surface of the samples and the Cu and Cu–C cathodic catalysts were comprised of a porous,continuous,and homogeneous film with nanocrystalline Cu with a grain size of 16 and 8 nm,respectively.The influence of the applied current and temperature on the electro-catalytic activity and selectivity of these materials was investigated.Among the two investigated electrodes,the pure Cu catalyst film showed the highest CO_2specific electrocatalytic reduction rates and higher selectivity to methanol formation compared to the Cu–C electrode,which was attributed to the higher particle size of the former and lower Cu O/Cu ratio.The obtained results show potential interest for the possible use of electrical renewable energy for the transformation of CO_2into valuable products using low metal loading Cu based electrodes(0.5 mg Cu cm^(-2))prepared by sputtering.
文摘Metal organic frameworks(MOFs)is a research hotspot in the solar fuel production and photo-degradation of pollutants field due to high surface area,rich metal/organic species,large pore volume,and adjustability of structures and compositions.Therefore,in this review,we first summarized the design factors of photocatalytic materials based on MOF from the perspective of"star"MOF.The modification strategies of MOFs-based photocatalysts were discussed to improve its photocatalytic activity and specific applications were summarized as well,including photocatalytic CO_(2)reduction,photocatalytic water splitting and photo-degradation of pollutants.Finally,the advantages and disadvantages of MOFs-based photocatalysts were discussed,the current challenges were highlighted,and suggestions for future research directions were proposed.
基金the National Key R&D Research Program of China (No. 2018YFB0905400)the National Natural Science Foundation of China (Grant Nos. 51622210, 51872277, 21606003 and 51802044)+2 种基金the DNL cooperation Fund, CAS (DNL180310)the Fundamental Research Funds for the Central Universities (WK3430000004)Opening Projects of CAS Key Laboratory of Materials for Energy Conversion and State Key Laboratory of Vanadium and Titanium Resources Comprehensive Utilization
文摘The discovery of novel electrode materials promises to unleash a number of technological advances in lithium-ion batteries.V2O5 is recognized as a high-performance cathode that capitalizes on the rich redox chemistry of vanadium to store lithium.To unlock the full potential of V2O5,nanotechnology solution and rational electrode design are used to imbue V2O5 with high energy and power density by addressing some of their intrinsic disadvantages in macroscopic crystal form.Here,we demonstrate a facile and environmental-friendly method to prepare nanorods-constructed 3D porous V2O5 architectures(3 D-V2O5)in large-scale.The 3D porous architecture is found to be responsible for the enhanced charge transfer kinetics and Li-ion diffusion rate of the 3D-V2O5 electrode.As the result,the 3D-V2O5 surpasses the conventional bulk V2O5 by showing enhanced discharge capacity and rate capability(delivering 154 and 127 m Ah g^-1 at 15 and 20 C,respectively).
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC)the China Scholarship Council(CSC,201708130079)。
文摘Coal fly ash(FA),a valuable industrial solid residue generated from coal combustion,is composed of various metal oxides and has a high thermal stability.Given that the coal-based energy will continue to account for a significant portion of global electricity generation in the coming years,the lack of effective management strategies exacerbates the threat of FA wastes to the surrounding environment and human health.For a sustainable development,green and renewable hydrogen economy and CO_(2)capture efforts provide appealing opportunities to valorize FA as catalysts and/or sorbents due to their appealing physicochemical properties.Hydrogen applications along with carbon neutrality are potential strategies to mitigate climate change crisis,but high processing costs(catalysts/sorbents)are challenging to realize this purpose.In this context,the utilization of FA not only enhances industrial competitiveness(by reducing manufacturing costs),but also provides ecologically friendly approaches to minimizing this solid waste.This state-of-the-art review highlights a wide-ranging outlook on the valorization of FA as catalysts and sorbents for hydrogen-rich gas production via conventional/intensified processes(CO_(2)/H_(2)O reforming,ammonia decomposition,hydride hydrolysis).The fundamental physicochemical characterizations and hazards/utilization of FA,which significantly affect the FA's utilization in various fields,are first introduced.The influence of several factors(like FA types and catalysis/sorption operation conditions)on the activity performance of FA-based materials is then discussed in detail.This critical review aims to open the window to further innovative ideas regarding the application of different FA residues in other catalytic and sorption processes.
基金supports from the National Key R&D program of China(2019YFC1604602)supports from the National Key Basic Research Program of China(2019YFC1906700)the National Natural Science Foundation of China(21876049,51878643)。
文摘Electrochemical transformation emerges as an important solution to sustainable energy conversion and chemical production.Conventional electrolytic systems usually operate under galvanostatic or potentiostatic conditions that sometimes result in unsatisfactory efficiencies or selectivities.Pulse electrolysis by pulsating and programming the potentials/currents can feature unique tunability to the electrodeelectrolyte interface properties that can give rise to drastically different electrochemical behaviors compared to the steady-state counterparts.Although invented almost 100 years ago,pulse electrolysis has received little attention over the period,but has recently attracted a revived focus toward the energyefficient electrolysis.This review will summarize the history and recent efforts of pulse electrolysis in three categories:water electrolysis,CO_(2)electrolysis and other electrolysis.In each section,the advantage of pulse electrolysis over steady-state electrolysis will be discussed in detail,giving a comprehensive overview of the pulse effect on the electrolytic systems.Finally,we will provide our vision of future directions in pulse electrolysis based on previous works.
基金supported by Hunan Provincial Key Laboratory of Micro&Nano Materials Interface Science,China,the National Natural Science Foundation of China(Nos.21773311,21972169)the Hunan Provincial Science and Technology Plan Project,China(No.2019TP1001)the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China.
文摘To address the ever-increasing CO_(2)concentration problem in the atmospheric air arisen by massive consumption of fossil fuels,electrocatalytic technologies that reduce CO_(2)to generate high value-added products have been gaining increasing interest.Cu-based CO_(2)reduction catalysts have attracted widespread attention owing to their capability of generating C1 and C_(2+)products.However,Cu-based catalysts are highly challenged by their low product selectivity.Recently,Cu-based bimetallic catalysts have been found the unique catalytical activity and selectivity in CO_(2)reduction reactions(CO_(2)RR).The incorporation of other metals can change the electronic circumstance of Cu-based catalysts,promoting the adsorption ability of the intermediate products and consequently leading to high selectivity.In this minireview,we intend to summarize recent advances of Cu-based bimetallic catalysts in producing C1 and C_(2+)products,involving designing heterostructure,alloy,defects and surface modification engineering.We pay special attention to the regulation of electronic structure of the composite catalysts,as well as insights into the relationship between electronic property and catalytical performance for Cu-based bimetallic catalysts.
基金the support from the Kyoto University and University of Malaya double degree programme to carry out this research
文摘Photocatalytic methane(CH_(4))production wherein CO_(2)is reduced to CH_(4) by utilizing solar radiation energy is gaining research and industrial focus because of its environmental-friendly notion.It offers twofold advantages:reduction in CO_(2)emission and production of artificial natural gas(methane)at the same time.In this paper,comparative energy,economic and environmental assessment of such photocatalytic methane production has been carried out between Japan and Malaysian conditions.Assumptions on the photocatalytic methane production plant and estimation of energy production,CO_(2)emission reduction,and economic indicators are made based on previous research and existing technologies.Energy analysis shows that Malaysia has a higher potential for energy production and CO_(2)emission reduction than Japan.Economic analysis reveals that the feasible reaction efficiencies of the plant in Japan and Malaysia are 8%.The slightly higher conversion efficiency in Malaysia is due to the energy price and CO_(2)tax.For the implementation of the photocatalytic methane production plant,the high energy price and CO_(2)tax will work as a driving force.
文摘Steel making is energy and material intensive.That is why steel is always demonized and confronted with incriminations and requirements for reduction of its environmental impact.Those pure demands-like for emission trading are short-sighted as they do not base on an integrated approach.Instead they merely consider CO_2 emissions during the production process.A forward-looking,global climate and environmental policy needs a sustainable life cycle approach.Therefore it must for example also take into account the contribution of steel towards cutting emissions in its application-in the energy.automotive and household sectors.Steel will play a key role in climate protection. One-third of the remaining CO_2 reduction target planned in Germany by 2020 can only be achieved with the help of innovative steel products and their applications.This is the conclusion of an independent study by The Boston Consulting Group(BCG) on behalf of Steel Institute VDEh,and German Steel Federation.The study compares CO_2 savings from important innovative steel applications(such as more efficient power stations,wind turbines,or lighter vehicles) with CO_2 emissions caused by steel production. By adopting this comprehensive perspective,the study for the first time provides a CO_2 balance for the material steel by comparing the CO_2 reductions made possible through innovative steel applications with the CO_2 emissions resulting from steel production.The balance was calculated on the basis of eight selected innovative steel applications in Germany for the period 2007 to 2020,whereby the CO_2 emissions caused by steel production were considered throughout the entire life cycle of the particular steel use.For the selected examples,the use of innovative steels resulted in a total savings potential of 74 Mt of CO_2 in 2020.The calculations are based on conservative assumptions;for example without counting of potentials by exported steel or by comparison with competitive materials. The production of steel in Germany,including the extraction of raw materials,transports and further processing, causes annual emissions of approx.67 Mt CO_2 This can be more than compensated by the above mentioned CO_2 savings.The balance is even more positive if one only considers the emissions of about 12 Mt/a CO_2 caused by the selected eight steel applications.Innovative steel use thus saves six times as much CO_2 as is generated by its production. Steel is part of the story and helps to achieve CO_2 reduction targets.On this basis the steel industry should start up with a new global approach to be accepted as a CO_2 killer,too,instead of being the devil.This needs a political discussion on an integrated approach taking into account the whole life cycle,which finally can lead away from stringent emission caps or incompatible emissions trading systems for the different regions.
文摘In the automatic CO_2 arc welding, the alteration of the vertical distance between the welding torch and the workpiece has a strong effect on the welding parameters such as welding current and voltage, with the result that the appearance and quality of weld are not steady. To weaken the influence of the distance alteration, a method is put forward in the paper. The method is that the alternate wire-feed control is used for compensating the welding current. On the basis of theoretical analysis, a static numerical model for alternate wire-feed control is established. The experiments show that the model-based regulation of the wire feed rate can compensate the welding current and ensure the appearance of weld. When the alteration of vertical distance between the torch and the workpiece is greater, not only is the wire feed rate regulated, but the output voltage of the power source is adjusted to ensure the appearance and quality of weld.
基金Hujiang Foundation of China(No.D14003)Yangtze River Delta Technology Joint Research,China(No.10195811000)
文摘The experiment was conducted to investigate the heat transfer performance of supercritical CO_2 in a casing heat exchanger by comparing their heat transfer,entropy production unit number,non-dimensional entropy production rate and field synergy factor.The results show that both heat transfer and entropy production unit number in four tubes decrease with water temperature increasing.Heat transfer and entropy production unit number in multiple tubes( i. e.,triple straight tube and double helix tube) is higher than their single counterparts; the non-dimensional entropy production rate increases with water temperature. Non-dimensional entropy production rate of triple straight tube and double helix tube is far below the single tube. Field synergy factor of double helix tube is much higher than that of the triple straight tube under the same condition. Further experiment was carried out in double helix tube,under various CO_2 pressure and inlet water temperature,the results are analyzed and reported in this paper.
文摘In recent years, interest in hydrogen as a fuel has sharply increased in the field of alternative and green energy due to its high energy capability and zero-emission behaviour. As a result, research in the development of new highly efficient methods for producing high-purity hydrogen is relevant. This paper presents, for the first time, the test results of an electrochemical cell with a proton-conducting La_(0.9)Sr_(0.1)ScO_(3-δ) electrolyte and symmetrical Sr_(1.95)Fe_(1.4)Ni_(0.1)Mo_(0.5)O_(6-δ)+ La_(0.9)Sr_(0.1)Sc_(0.9)Co_(0.1)O_(3-δ) electrodes as a hybrid setup for electricity generation in proton ceramic fuel cell mode, for hydrogen separation from H_(2)+ Ar mixture and the production of high-purity hydrogen from methane with simultaneous CO_(2) utilization.It was found that this electrochemical cell generates high flow rates of hydrogen during its separation through a proton-conducting membrane from H_(2)+ Ar mixture, about 500 cm^(3)h^(-1)cm^(-2)at a current density of 0.6 A cm^(-2)as well as about 370 cm^(3) h^(-1)cm^(-2)at a current density of 0.5 A cm^(-2) from CH_(4)+ CO_(2) mixture at 800 ℃ which shows that these cells are promising for hydrogen production.
文摘Global warming that triggered the climate change is largely due to increased CO2 concentrations. Utilization of Chlorella sp. to reduce CO2 gas is a promising potential. Chlorella can efficiently reduce CO2 and easily be adapted into the photobioreactor system engineering. In this research, the type of microalgae which is used is Chlorella vulgaris in Benneck medium. The system of used reactor is mid-scale bubble column photobioreactor flowed by air which contains 5% CO2. Chlorella vulgaris biomass production will be increased by adjusting the cell density in the photobioreactor. These arrangements will be implemented through a continuous treatment of cell entrapment. The arrangement of cell density in continuous reactor has been proven to increase production of Chlorella vulgaris biomass about 1.25 times more than cultivation without arrangement of cell density by using the same number of inoculums. The results also have shown that the average rate of CO2 fixation and Carbon Transfer Rate (CTR) are obtained at cell entrapment condition about 17 times larger. Continuous cellular entrapment method is very potential to be developed as a method for the production of biomass. Lipids and carotene that have been produced from Ch. vulgaris respectively are 18.24% and 9.42 ppm.