期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于AWLS-SVM的污水处理过程软测量建模 被引量:28
1
作者 赵超 戴坤成 +1 位作者 王贵评 张登峰 《仪器仪表学报》 EI CAS CSCD 北大核心 2015年第8期1792-1800,共9页
针对污水处理过程建模中样本数据可能存在的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(AWLS-SVM)回归的软测量建模方法。该方法基于最小二乘支持向量机模型,根据样本拟合误差,并结合改进的指数分布赋权规则,自适... 针对污水处理过程建模中样本数据可能存在的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(AWLS-SVM)回归的软测量建模方法。该方法基于最小二乘支持向量机模型,根据样本拟合误差,并结合改进的指数分布赋权规则,自适应地为每个建模样本分配不同的权值,以降低随机误差对模型性能的影响;同时采用一种全局优化算法——混沌粒子群模拟退火(CPSO-SA)算法对最小二乘支持向量机的模型参数进行优化选择,以提高模型的泛化能力。仿真实验表明,AWLS-SVM模型的预测精度及鲁棒性能优于LS-SVM和WLS-SVM。最后,应用AWLS-SVM方法建立污水处理过程出水水质关键参数的软测量模型,获得了较好的效果。 展开更多
关键词 最小二乘支持向量机 污水处理过程 污水出水水质 混沌粒子群 模拟退火 软测量建模
下载PDF
基于KPCA-WLSSVM的公共建筑能耗预测 被引量:1
2
作者 许巧玲 林跃东 严哲钦 《江南大学学报(自然科学版)》 CAS 2015年第6期710-716,共7页
由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低。为了提高建筑能耗预测精度,建立了一种基于KPCA-WLSSVM的建筑能耗预测模型。利用核主元分析(KPCA)对输入变量进行数... 由于建筑能耗因子间存在非线性和高度冗余特性,传统预测方法很难消除数据之间冗余和捕捉非线性特征,导致预测精度较低。为了提高建筑能耗预测精度,建立了一种基于KPCA-WLSSVM的建筑能耗预测模型。利用核主元分析(KPCA)对输入变量进行数据压缩,消除变量之间的相关性,简化模型结构;进一步采用加权最小二乘支持向量机(WLSSVM)方法建立建筑能耗预测模型,同时结合一种新型混沌粒子群-模拟退火混合优化(CPSO-SA)算法对模型参数进行优化,以提高模型的预测性能及泛化能力。通过将KPCA-WLSSVM模型方法应用于某公共建筑能耗的预测中,并与WLSSVM、LSSVM及RBFNN模型相比,实验结果表明KPCA-WLSSVM模型方法能有效提高建筑能耗预测精度。 展开更多
关键词 建筑能耗 核主元分析 加权最小二乘支持向量机 模拟退火混合优化
下载PDF
基于KPLS-LSSVM的航煤闪点和干点软测量应用研究 被引量:2
3
作者 赵超 王贵评 +1 位作者 戴坤成 黄云云 《计算机与应用化学》 CAS 2016年第2期157-162,共6页
软测量技术是解决流程工业中一类难以在线测量变量估计问题的有效方法。本文提出了一种基于核偏最小二乘方法(KPLS)和最小二乘支持向量机(LS-SVM)的航煤闪点和干点软测量建模方法,采用核偏最小二乘方法对输入变量进行数据压缩,消除变量... 软测量技术是解决流程工业中一类难以在线测量变量估计问题的有效方法。本文提出了一种基于核偏最小二乘方法(KPLS)和最小二乘支持向量机(LS-SVM)的航煤闪点和干点软测量建模方法,采用核偏最小二乘方法对输入变量进行数据压缩,消除变量之间的相关性,简化最小二乘支持向量机模型结构,并通过混沌粒子群—模拟退火方法(CPSO-SA)对最小二乘支持向量机的参数进行优化选择。将优化结果应用于CDU航煤闪点和干点软测量建模,结果表明:该方法具有学习速度快、跟踪性能好以及泛化能力强等优点,为分馏过程在线质量控制的实施奠定了基础。 展开更多
关键词 航煤闪点和干点 核偏最小二乘法 最小二乘支持向量机 混沌粒子群—模拟退火
原文传递
基于RLSSVM-CPSOSA的PEM燃料电池系统建模
4
作者 赵超 陈培江 +1 位作者 王贵评 戴坤成 《计算机与应用化学》 CAS 2017年第3期201-206,共6页
PEMFC电堆是一个包括流动、传热、传质和电化学反应等多种物理化学现象的复杂机体,其建模问题是一个具有挑战性的问题。本文提出一种基于RLSSVM-CPSOSA模型的燃料电池建模方法。CPSOSA算法将CO算法、模拟退火算法和粒子群算法有机结合,... PEMFC电堆是一个包括流动、传热、传质和电化学反应等多种物理化学现象的复杂机体,其建模问题是一个具有挑战性的问题。本文提出一种基于RLSSVM-CPSOSA模型的燃料电池建模方法。CPSOSA算法将CO算法、模拟退火算法和粒子群算法有机结合,以克服粒子群算法早熟收敛的不足。然后利用CPSOSA算法对鲁棒最小二乘支持向量机模型(RLSSVM)进行参数寻优,从而获得RLSSVM-CPSOSA燃料电池模型。以MATLAB平台搭建PEMFC电堆模型并进行仿真研究,结果表明所提出的RLSSVM-CPSOSA模型的有效性和良好的预测精度。为PEM燃料电池实时控制系统奠定了基础。 展开更多
关键词 质子交换膜燃料电池 鲁棒最小二乘支持向量机 混沌粒子群模拟退火算法
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部