In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an ext...In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.展开更多
This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patie...This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.展开更多
Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispo...Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispositions, do not guarantee success in the workplace, because Critical Thinking Dispositions (CTD) are important elements of intellectual reasoning that simulate a person towards using the CT skills. Therefore, nursing educational programs should promote lifelong learning rather than focusing on transferring the content of nursing knowledge only. And for this purpose, quality education is the key. Education should focus on teaching from diverse perspectives, incorporating various teaching learning strategies that are congruent with the modern era. Purpose: The purpose of this study is to explore critical thinking dispositions among final year Baccalaureate Nursing students of various military colleges of nursing, in Pakistan. Methodology: A descriptive qualitative exploratory study design was used to investigate the CTD of BSc final year nursing students. The study population included twelve willing nursing students, from six military colleges across the country. Demographic information and consent was taken from the participants of the study. In-depth interviews, through a semi structured interview guide, and probes were used to obtain data related to personal experiences of CTD amongst the nursing students. Results: Data analysis showed two broad themes: 1) Perceptions of CT, and 2) Experiences of CT dispositions. In theme one, the emerging category was: Clarity of CT;whereas in theme two, the categories that emerged were: a) Truth Seeking, b) Open Mindedness, c) Inquisitiveness, and d) Self Organization. Conclusion: The findings of the study revealed positive dispositions towards truth seeking, open mindedness, and self-organization, whereas disposition towards inquisitiveness was weak. Self-confidence and maturity also emerged as positive factors that the students possessed. This study recommends that faculty and learners should extend their concept of CTD, and emphasizes its application in daily routine. Additionally, faculty should modify their instructional strategies and focus on the cultivation of dispositions of inquisitiveness, curiosity, and allow questioning by students in the class.展开更多
Multimodal monitoring(MMM)in the intensive care unit(ICU)has become increasingly sophisticated with the integration of neurophysical principles.However,the challenge remains to select and interpret the most appropriat...Multimodal monitoring(MMM)in the intensive care unit(ICU)has become increasingly sophisticated with the integration of neurophysical principles.However,the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes.This manuscript reviewed current neuromonitoring tools,focusing on intracranial pressure,cerebral electrical activity,metabolism,and invasive and noninvasive autoregulation moni-toring.In addition,the integration of advanced machine learning and data science tools within the ICU were discussed.Invasive monitoring includes analysis of intracranial pressure waveforms,jugular venous oximetry,monitoring of brain tissue oxygenation,thermal diffusion flowmetry,electrocorticography,depth electroencephalography,and cerebral microdialysis.Noninvasive measures include transcranial Doppler,tympanic membrane displacement,near-infrared spectroscopy,optic nerve sheath diameter,positron emission tomography,and systemic hemodynamic monitoring including heart rate variability analysis.The neurophysical basis and clinical relevance of each method within the ICU setting were examined.Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools,helping clinicians make more accurate and timely decisions.These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies.MMM,grounded in neurophysics,offers a more nuanced understanding of cerebral physiology and disease in the ICU.Although each modality has its strengths and limitations,its integrated use,especially in combination with machine learning algorithms,can offer invaluable information for individualized patient care.展开更多
科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜...科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。展开更多
文摘In the real world,one of the most common problems in project management is the unpredictability of resources and timelines.An efficient way to resolve uncertainty problems and overcome such obstacles is through an extended fuzzy approach,often known as neutrosophic logic.Our rigorous proposed model has led to the creation of an advanced technique for computing the triangular single-valued neutrosophic number.This innovative approach evaluates the inherent uncertainty in project durations of the planning phase,which enhances the potential significance of the decision-making process in the project.Our proposed method,for the first time in the neutrosophic set literature,not only solves existing problems but also introduces a new set of problems not yet explored in previous research.A comparative study using Python programming was conducted to examine the effectiveness of responsive and adaptive planning,as well as their differences from other existing models such as the classical critical path problem and the fuzzy critical path problem.The study highlights the use of neutrosophic logic in handling complex projects by illustrating an innovative dynamic programming framework that is robust and flexible,according to the derived results,and sets the stage for future discussions on its scalability and application across different industries.
文摘This editorial explores the significant challenge of intensive care unit-acquiredweakness(ICU-AW),a prevalent condition affecting critically ill patients,characterizedby profound muscle weakness and complicating patient recovery.Highlightingthe paradox of modern medical advances,it emphasizes the urgent needfor early identification and intervention to mitigate ICU-AW's impact.Innovatively,the study by Wang et al is showcased for employing a multilayer perceptronneural network model,achieving high accuracy in predicting ICU-AWrisk.This advancement underscores the potential of neural network models inenhancing patient care but also calls for continued research to address limitationsand improve model applicability.The editorial advocates for the developmentand validation of sophisticated predictive tools,aiming for personalized carestrategies to reduce ICU-AW incidence and severity,ultimately improving patientoutcomes in critical care settings.
文摘Background: Critical Thinking (CT) dispositions in nursing are prominent predictors of competence in delivering high-quality care, and of professionalism, in newly graduated nurses. CT skills, in isolation of CT dispositions, do not guarantee success in the workplace, because Critical Thinking Dispositions (CTD) are important elements of intellectual reasoning that simulate a person towards using the CT skills. Therefore, nursing educational programs should promote lifelong learning rather than focusing on transferring the content of nursing knowledge only. And for this purpose, quality education is the key. Education should focus on teaching from diverse perspectives, incorporating various teaching learning strategies that are congruent with the modern era. Purpose: The purpose of this study is to explore critical thinking dispositions among final year Baccalaureate Nursing students of various military colleges of nursing, in Pakistan. Methodology: A descriptive qualitative exploratory study design was used to investigate the CTD of BSc final year nursing students. The study population included twelve willing nursing students, from six military colleges across the country. Demographic information and consent was taken from the participants of the study. In-depth interviews, through a semi structured interview guide, and probes were used to obtain data related to personal experiences of CTD amongst the nursing students. Results: Data analysis showed two broad themes: 1) Perceptions of CT, and 2) Experiences of CT dispositions. In theme one, the emerging category was: Clarity of CT;whereas in theme two, the categories that emerged were: a) Truth Seeking, b) Open Mindedness, c) Inquisitiveness, and d) Self Organization. Conclusion: The findings of the study revealed positive dispositions towards truth seeking, open mindedness, and self-organization, whereas disposition towards inquisitiveness was weak. Self-confidence and maturity also emerged as positive factors that the students possessed. This study recommends that faculty and learners should extend their concept of CTD, and emphasizes its application in daily routine. Additionally, faculty should modify their instructional strategies and focus on the cultivation of dispositions of inquisitiveness, curiosity, and allow questioning by students in the class.
文摘Multimodal monitoring(MMM)in the intensive care unit(ICU)has become increasingly sophisticated with the integration of neurophysical principles.However,the challenge remains to select and interpret the most appropriate combination of neuromonitoring modalities to optimize patient outcomes.This manuscript reviewed current neuromonitoring tools,focusing on intracranial pressure,cerebral electrical activity,metabolism,and invasive and noninvasive autoregulation moni-toring.In addition,the integration of advanced machine learning and data science tools within the ICU were discussed.Invasive monitoring includes analysis of intracranial pressure waveforms,jugular venous oximetry,monitoring of brain tissue oxygenation,thermal diffusion flowmetry,electrocorticography,depth electroencephalography,and cerebral microdialysis.Noninvasive measures include transcranial Doppler,tympanic membrane displacement,near-infrared spectroscopy,optic nerve sheath diameter,positron emission tomography,and systemic hemodynamic monitoring including heart rate variability analysis.The neurophysical basis and clinical relevance of each method within the ICU setting were examined.Machine learning algorithms have shown promise by helping to analyze and interpret data in real time from continuous MMM tools,helping clinicians make more accurate and timely decisions.These algorithms can integrate diverse data streams to generate predictive models for patient outcomes and optimize treatment strategies.MMM,grounded in neurophysics,offers a more nuanced understanding of cerebral physiology and disease in the ICU.Although each modality has its strengths and limitations,its integrated use,especially in combination with machine learning algorithms,can offer invaluable information for individualized patient care.
文摘科学有效地预测水质对于水环境的可持续发展和人类健康具有重要意义,为此以固原市某黄河断面的水质监测数据为研究对象,提出了基于指标客观性的权重赋权(Criteria Importance Though Intercriteria Correlation,CRITIC)法和改进的秃鹰搜索(Improved Bald Eagle Search,IBES)算法优化双向长短时记忆网络(Bidirectional Long Short-Term Memory Network,BiLSTM)的组合水质等级预测模型。首先,采用CRITIC法确定各水质指标的权重,加权求和获得一项综合水质指标,从而提出一种改进的水质评价指标体系,以为BiLSTM提供更丰富、更可靠的水质特征信息。其次,在训练过程中引入Logistic映射和莱维飞行策略,并设计交叉共享及准反向搜索策略优化秃鹰搜索(Bald Eagle Search,BES)算法,以提升其种群多样性,增强寻优能力。最后,通过IBES算法迭代寻找BiLSTM的最佳学习率、隐藏层节点数以及正则化系数的超参数组合,进一步提高其预测水平。结果显示:与IBES-BiLSTM、BES-BiLSTM、GA-BiLSTM、PSO-BiLSTM和BiLSTM等模型相比,CRITIC-IBES-BiLSTM模型进行水质等级预测的准确率、精准率、召回率及F_(1)均最高,且具有更好的稳定性。