According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak s...According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.展开更多
Access to electricity is poor in the Economic Community of West African States (ECOWAS). Concentrating Solar Power (CSP) presents better opportunities for increasing access to electricity and for diversifying sources ...Access to electricity is poor in the Economic Community of West African States (ECOWAS). Concentrating Solar Power (CSP) presents better opportunities for increasing access to electricity and for diversifying sources of energy in the ECOWAS region;however, to date, except for Burkina Faso, no site evaluation pertaining to the region has ever been performed for CSP. This study provides potential assessment and site ranking for large-scale CSP projects in the ECOWAS region. It computes the nominal potential power and gives the corresponding energy yield with many scenarios. By considering only 1% of the suitable land area with daily DNI greater or equal to 5 kWh/m2, a land slope less or equal to 5% and distance to transmission line not more than 100 km, the study showed, for example, that West Africa has a potential nominal capacity of 21.3 GW for parabolic trough technology.展开更多
Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid a...Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid area,natural draft dry cooling tower is a promising choice.To develop the experimental studies on small cooling tower,a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence.The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 ℃ to 32 ℃.The cooling tower numerical model was refined and validated with the experimental data.The model of 1 MW concentrating solar thermal supercritical CO2 power cycle was developed and integrated with the cooling tower model.The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated.The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO2 Brayton cycle were analysed and discussed.展开更多
A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework c...A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.展开更多
Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten...Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.展开更多
CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and else...CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.展开更多
Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-c...Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.展开更多
The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the fr...The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.展开更多
The demand for energy in Kenya, especially for electricity, is increasing rapidly due to population growth, decentralization of governance, and technological and industrial development. Hydroelectricity, the core sour...The demand for energy in Kenya, especially for electricity, is increasing rapidly due to population growth, decentralization of governance, and technological and industrial development. Hydroelectricity, the core source of power, has proved unreliable due to the rapid climate change. In response, the country has ventured into other renewable sources to counter the issues posed by the alternative nonrenewable sources such as unreliability, high costs, and environmental degradation as seen with the use of diesel and kerosene. The purpose of this research is to determine the viability of setting up a large-scale concentrated solar power plantation in Kenya that will assist in stabilizing Kenya’s energy demand and supply as well as increase its affordability. The project is divided into three phases. The first phase conducts an overlay analysis to determine the Kenya’s solar energy potential. The results show that the northern region has the highest potential. The second step involves the creation of an exclusion mask which eliminates the unsuitable land forms and Land Use Land Cover. Based on the results, the best ten sites are situated in Turkana and Marsabit counties. The final phase involves the evaluation of the potential capacity of power that could be generated per square kilometer. The study finds out that the potential varies based on the technologies: parabolic trough, linear Fresnel reflector, or dish systems.展开更多
Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitabl...Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitable sites to accommodate them. Conversely, CSP-biomass plants due to lower investment may be an option for CSP penetration in Sahel where Direct Normal Irradiation (DNI) is between 1400 kWh/m2/year and 2000 kWh/m2/year and significant biomass potential. This work presents the results of an identification of suitable sites for hybrid CSP-Biomass in the Sahel, case study of Senegal, taking into account the Direct Normal Irradiation, the availability of water, space and biomass potential. The identified sites have a DNI > 1600 kWh/m2/year. The biogas production capacity is equivalent to 5,096,563 m3/year. The quantity of Typha Australis, invasive plant in Senegal river valley available is estimated at more than 3 million tons. The capacity of electrical energy in this zone is estimated at 6.89 GWe for an installation surface estimated at 275.61 km2. The establishment of CSP/hybrid plants can also contribute to combat the proliferation of Typha Australis.展开更多
Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) op...Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium.展开更多
CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is cl...CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.展开更多
There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there a...There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there are a lot of random and uncontrollable,measurable and unmeasurable disturbances in solar collector field.This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control(DMC)by linearizing and discretizing the dynamic model of the solar collector field.In addition,the purpose of controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow of molten salt.In order to further improve the ability of the system to suppress unmeasured disturbances,a steady-state Kalman filter is designed to estimate state variables,so that the system has better stability and robustness.The simulation verification results show that the DMC control system based on Kamlan filtering has better control effect than the traditional DMC control system.In the case of large fluctuations in solar radiation intensity and consideration of undetectable interference,the overshoot of the system is reduced by 4%and the rise time remains unchanged.展开更多
During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the f...During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the first time in Louisiana. The large aperture trough (LAT) solar collectors were provided by Gossamer Space Frames and are coupled with an organic Rankine cycle (ORC) power block provided by ElectraTherm, Inc. for study of the feasibility of cost-effective commercial scale solar thermal power production in Louisiana. Supported by CLECO and providing power to the existing CLECO grid, the implementation of state-of-the-industry collector frames, mirrors, trackers, and ORC power block is studied under various local weather conditions which present varied operating regimes from existing solar thermal installations. The solar collectors provide a design output of 650 kWth and preliminary actual performance data from the system level is presented. The optimal size, configuration and location for such a plant in the given solar resource region are being studied in conjunction with CLECO’s search for optimal renewable energy solutions for the region. The pilot scale size of the facility and implementation of the simpler ORC allow remote operation of the facility and flexibility in operating parameters for optimization studies. The construction of the facility was supported by the Louisiana Department of Natural Resources, the U.S. Department of Energy, and CLECO. The continued operation of the plant is supported by CLECO Power LLC and the University of Louisiana at Lafayette.展开更多
There are a few standards reported in the literature for testing and evaluation of thermal performance of solar concentrators based on sensible heating of working fluid. The preceding standard measures only the cookin...There are a few standards reported in the literature for testing and evaluation of thermal performance of solar concentrators based on sensible heating of working fluid. The preceding standard measures only the cooking efficiency and cooking capacity. Apart from thermal efficiency, there is an imperative need for other important parameters of the solar concentrators such as its stagnation temperature, cooking capacity, cost per watts delivered, weight of the cooker, ease of handling and aesthetics. The characterization of a concentrator at its operating temperature settles appropriate size and type of concentrator for any thermal application. The performance test is conducted at Chandwad (20.3292°N, 74.2444°E), Maharashtra and the proposed protocol aims for evaluation of thermal performance of solar cooking system and standardization of reporting the test results so that anyone can easily recognize and use it.展开更多
Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher co...Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher conversion efficiency with reliable and affordable supply of electricity to the public. The proposed approach is using 18 inch diameter of solar dish concentrator to measure the solar radiation using the aluminium foil as a reflector. In this paper, solar radiation is collected to investigate the solar fraction on incoming solar energy in wet climate.展开更多
This paper proposes a new power generating system that combines wind power(WP),photovoltaic(PV),trough concentrating solar power(CSP)with a supercritical carbon dioxide(S-CO_(2))Brayton power cycle,a thermal energy st...This paper proposes a new power generating system that combines wind power(WP),photovoltaic(PV),trough concentrating solar power(CSP)with a supercritical carbon dioxide(S-CO_(2))Brayton power cycle,a thermal energy storage(TES),and an electric heater(EH)subsystem.The wind power/photovoltaic/concentrating solar power(WP-PV-CSP)with the S-CO_(2) Brayton cycle system is powered by renewable energy.Then,it constructs a bi-level capacity-operation collaborative optimization model and proposes a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)nested linear programming(LP)algorithm to solve this optimization problem,aiming to obtain a set of optimal capacity configurations that balance carbon emissions,economics,and operation scheduling.Afterwards,using Zhangbei area,a place in China which has significant wind and solar energy resources as a practical application case,it utilizes a bi-level optimization model to improve the capacity and annual load scheduling of the system.Finally,it establishes three reference systems to compare the annual operating characteristics of the WP-PV-CSP(S-CO_(2))system,highlighting the benefits of adopting the S-CO_(2) Brayton cycle and equipping the system with EH.After capacity-operation collaborative optimization,the levelized cost of energy(LCOE)and carbon emissions of the WP-PV-CSP(S-CO_(2))system are decreased by 3.43%and 92.13%,respectively,compared to the reference system without optimization.展开更多
随着“双碳”目标不断推进,可再生能源的装机容量和发电占比不断增加。然而,以风电、光伏为代表的可再生能源所固有的不确定性和波动性,使得以火电机组深度调峰为主的传统运行方式的经济性难以得到保障。针对上述问题,提出一种含聚合光...随着“双碳”目标不断推进,可再生能源的装机容量和发电占比不断增加。然而,以风电、光伏为代表的可再生能源所固有的不确定性和波动性,使得以火电机组深度调峰为主的传统运行方式的经济性难以得到保障。针对上述问题,提出一种含聚合光热发电(Concentrating Solar Power,CSP)和深度调峰火电机组的电力系统分布鲁棒机会约束优化调度方法。首先,分析火电机组的基本调峰和深度调峰能力,构建考虑火电机组进行基本调峰或深度调峰成本的深度调峰模型。其次,分析光热电站启动时的热量传递过程,构建考虑启动热量约束的CSP模型。在此基础上,采用基于数据驱动的分布鲁棒机会约束描述可再生能源出力的不确定性,构建以火电机组发电成本、购售电成本和储能使用成本之和最小为优化目标的调度模型。最后,以改进的IEEE 30节点系统为例验证了所提方法具有较好的经济性和鲁棒性。展开更多
Concentrating photovoltaic/concentrating solar power(CPV/CSP)systems suffer from varying irradiation and extreme working conditions.In this study,a dynamic physical model is developed for the CPV/CSP hybrid system to ...Concentrating photovoltaic/concentrating solar power(CPV/CSP)systems suffer from varying irradiation and extreme working conditions.In this study,a dynamic physical model is developed for the CPV/CSP hybrid system to analyze the dynamic responses of several key parameters,such as the solar radiation saltation or linear variation to represent the typical weather variations.The results show that the hybrid system could rapidly reach the steady state in less than about 53 s after the solar radiation saltation increases or decreases by 10%.The response time reflects that the thermal hysteresis of the hybrid system is mainly determined by varying the outlet temperature of R134a from the solar thermal receiver.Meanwhile,when the solar radiation changes linearly,a lower gradient is beneficial to remit the thermal hysteresis of the hybrid system and improve the thermal stability,and the parameters could be treated as the steady state values with a gradient of less than 0.2 W m^-2 s^-1.Afterward,the quasi-steady state model was used to analyze the all-day dynamic performance of the hybrid system.It shows that the power output and the flow rate are directly related to the direct normal irradiance(DNI),while the outlet temperature of R134a vapor could be almost constant except for the starting and stopping periods.展开更多
基金support of the projects Youth Science Foundation of Gansu Province(Source-Grid-Load Multi-Time Interval Optimization Scheduling Method Considering Wind-PV-CSP Combined DC Transmission,No.22JR11RA148)Youth Science Foundation of Lanzhou Jiaotong University(Research on Coordinated Dispatching Control Strategy of High Proportion New Energy Transmission Power System with CSP Power Generation,No.2020011).
文摘According to the multi-time-scale characteristics of power generation and demand-side response(DR)resources,as well as the improvement of prediction accuracy along with the approaching operating point,a rolling peak shaving optimization model consisting of three different time scales has been proposed.The proposed peak shaving optimization model considers not only the generation resources of two different response speeds but also the two different DR resources and determines each unit combination,generation power,and demand response strategy on different time scales so as to participate in the peaking of the power system by taking full advantage of the fast response characteristics of the concentrating solar power(CSP).At the same time,in order to improve the accuracy of the scheduling results,the combination of the day-ahead peak shaving phase with scenario-based stochastic programming can further reduce the influence of wind power prediction errors on scheduling results.The testing results have shown that by optimizing the allocation of scheduling resources in each phase,it can effectively reduce the number of starts and stops of thermal power units and improve the economic efficiency of system operation.The spinning reserve capacity is reduced,and the effectiveness of the peak shaving strategy is verified.
文摘Access to electricity is poor in the Economic Community of West African States (ECOWAS). Concentrating Solar Power (CSP) presents better opportunities for increasing access to electricity and for diversifying sources of energy in the ECOWAS region;however, to date, except for Burkina Faso, no site evaluation pertaining to the region has ever been performed for CSP. This study provides potential assessment and site ranking for large-scale CSP projects in the ECOWAS region. It computes the nominal potential power and gives the corresponding energy yield with many scenarios. By considering only 1% of the suitable land area with daily DNI greater or equal to 5 kWh/m2, a land slope less or equal to 5% and distance to transmission line not more than 100 km, the study showed, for example, that West Africa has a potential nominal capacity of 21.3 GW for parabolic trough technology.
文摘Concentrating solar thermal power system can provide low carbon,renewable energy resources in countries or regions with strong solar irradiation.For this kind of power plant which is likely to be located in the arid area,natural draft dry cooling tower is a promising choice.To develop the experimental studies on small cooling tower,a 20 m high natural draft dry cooling tower with fully instrumented measurement system was established by the Queensland Geothermal Energy Centre of Excellence.The performance of this cooling tower was measured with the constant heat input of 600 kW and 840 kW and with ambient temperature ranging from 20 ℃ to 32 ℃.The cooling tower numerical model was refined and validated with the experimental data.The model of 1 MW concentrating solar thermal supercritical CO2 power cycle was developed and integrated with the cooling tower model.The influences of changing ambient temperature and the performance of the cooling tower on efficiency of the power system were simulated.The differences of the mechanism of the ambient temperature effect on Rankine cycle and supercritical CO2 Brayton cycle were analysed and discussed.
文摘A new small concentrating solar power plant which is suitable for urban area is presented, and a theoretical framework for the energy and exergy analysis in the overall power plant is also constructed. The framework can be used to evaluate the energy and exergy losses in each component. Furthermore, the energy and exergy efficiencies have also been computed and compared for the individual components as well as for the overall plant.
文摘Concentrating solar power(CSP) has garnered considerable global attention as a reliable means of generating bulk electricity, effectively addressing the intermittent nature of solar resources.The integration of molten salt technology for thermal energy storage(TES) has further contributed to the growth of CSP plants;however, the corrosive nature of molten salts poses challenges to the durability of container materials, necessitating innovative corrosion mitigation strategies.This review summarizes scientific advancements in high-temperature anticorrosion coatings for molten nitrate salts, highlighting the key challenges and future trends.It also explores various coating types, including metallic, ceramic, and carbon-based coatings, and compares different coating deposition methods.This review emphasizes the need for durable coatings that meet long-term performance requirements and regulatory limitations, with an emphasis on carbon-based coatings and emerging nanomaterials.A combination of multiple coatings is required to achieve desirable anticorrosion properties while addressing material compatibility and cost considerations.The overall goal is to advance the manufacturing, assembly, and performance of CSP systems for increased efficiency, reliability, and durability in various applications.
文摘CSP (concentrating solar power) is a commercially available renewable energy technology capable of harnessing the immense solar resource in southern Europe, the MENA region (Middle East and North Africa), and elsewhere. This paper summarises the findings of a study by the European Academies Science Advisory Council which has examined the current status and development challenges of CSP, and consequently has evaluated the potential contribution of CSP in Europe and the MENA region to 2050. It identifies the actions that will be required by scientists, engineers, policy makers, politicians, business and investors alike, to enable this vast solar resource to make a major contribution to establishing a sustainable energy system. The study concludes that cost reductions of 50%-60% in CSP electricity may reasonably be expected in the next 10-15 years, enabling the technology to be cost competitive with fossil-fired power generation at some point between 2020 and 2030. Incorporation of storage delivers added value in enabling CSP to deliver dispatchable power. Incentive schemes will be needed in Europe and MENA countries to enable this point to be achieved. Such schemes should reflect the true value of electricity to the grid, effectively drive research and development, and ensure transparency of performance and cost data.
文摘Concentrated solar power(CSP)plants with thermal energy storage(TES)system are emerging as one kind of the most promising power plants in the future renewable energy system,since they can supply dispatchable and low-cost electricity with abundant but intermittent solar energy.In order to significantly reduce the levelized cost of electricity(LCOE)of the present commercial CSP plants,the next generation CSP technology with higher process temperature and energy efficiency is being developed.The TES system in the next generation CSP plants works with new TES materials at higher temperatures(>565℃)compared to that with the commercial nitrate salt mixtures.This paper reviews recent progressin research and development of the next generation CSP and TES technology.Emphasis is given on theadvanced'TES technology based on molten chloride salt mixtures such as MgCl_(2)/NaCl/KCl which hassimilar thermo-physical properties as the commercial nitrate salt mixtures,higher thermal stability(>800℃),and lower costs(<0.35USD·kg^(-1)).Recent progress in the selection/optimization of chloridesalts,determination of molten chloride salt properties,and corrosion control of construction materials(eg.,alloys)in molten chlorides is reviewed.
基金Funded by the National Natural Science Foundation of China(Nos.12004150,61674073)the Guangdong Basic and Applied Basic Research Foundation(Nos.2020A1515110998,2022A1515012123)+4 种基金the Science and Technology Planning Project of Guangdong Province(2017A050506056)the College Physics Teaching Team(114961700249)the Key Basic and Applied Research Project of Guangdong Province(2016KZDXM021)the Major Projects of Basic and Application Research in Guangdong Province(2017KZDXM055)the Natural Science Research Youth Project of Lingnan Normal University(QL1404)。
文摘The microstructures,components,thermal stability,specific heat capacity and thermal conductivity of basalt sample were studied.Besides,as a comprehensive result of thermal expansion and contraction process,both the friction coefficient and wear rate of the basalt sample were also characterized.Our results indicate that basalt is an excellent candidate to be used as thermal energy storage material for concentrated solar power plants,and also provide a strategy for solar energy utilization in volcanic area with excellent geographical environment.
文摘The demand for energy in Kenya, especially for electricity, is increasing rapidly due to population growth, decentralization of governance, and technological and industrial development. Hydroelectricity, the core source of power, has proved unreliable due to the rapid climate change. In response, the country has ventured into other renewable sources to counter the issues posed by the alternative nonrenewable sources such as unreliability, high costs, and environmental degradation as seen with the use of diesel and kerosene. The purpose of this research is to determine the viability of setting up a large-scale concentrated solar power plantation in Kenya that will assist in stabilizing Kenya’s energy demand and supply as well as increase its affordability. The project is divided into three phases. The first phase conducts an overlay analysis to determine the Kenya’s solar energy potential. The results show that the northern region has the highest potential. The second step involves the creation of an exclusion mask which eliminates the unsuitable land forms and Land Use Land Cover. Based on the results, the best ten sites are situated in Turkana and Marsabit counties. The final phase involves the evaluation of the potential capacity of power that could be generated per square kilometer. The study finds out that the potential varies based on the technologies: parabolic trough, linear Fresnel reflector, or dish systems.
文摘Concentrating Solar Power (CSP) is non-existent in Sahel. Such a situation arises from the high investment costs required by these energy infrastructures and from a lack of information on the identification of suitable sites to accommodate them. Conversely, CSP-biomass plants due to lower investment may be an option for CSP penetration in Sahel where Direct Normal Irradiation (DNI) is between 1400 kWh/m2/year and 2000 kWh/m2/year and significant biomass potential. This work presents the results of an identification of suitable sites for hybrid CSP-Biomass in the Sahel, case study of Senegal, taking into account the Direct Normal Irradiation, the availability of water, space and biomass potential. The identified sites have a DNI > 1600 kWh/m2/year. The biogas production capacity is equivalent to 5,096,563 m3/year. The quantity of Typha Australis, invasive plant in Senegal river valley available is estimated at more than 3 million tons. The capacity of electrical energy in this zone is estimated at 6.89 GWe for an installation surface estimated at 275.61 km2. The establishment of CSP/hybrid plants can also contribute to combat the proliferation of Typha Australis.
文摘Parabolic through concentrators and parabolic dish concentrators followed by a PVR (pressurized volumetric receiver) are proposed, studying the performance behavior of a RCBC (regenerative closed Brayton cycle) operating with helium or hydrogen. A pressurized gas such as helium circulates along the volumetric receiver, capturing the concentrated thermal solar energy to be further converted into electric power via a thermal cycle. The overall efficiency of the plant has been computed under variable parameters to determine the operating conditions for which efficiency and specific power are acceptable. As consequence of the proposed analysis, it is concluded that direct coupling between volumetric receivers and thermal engines renders high efficiency while avoiding an intermediate heat transfer medium.
文摘CSP (concentrated solar power) has been viewed as the technology that if properly developed could lead to a large scale conversion of solar energy into electricity. CSP is a type of solar energy converter that is classified as thermal converter because the output power produced is a function of the operating temperature. The main components of a CSP plant are the solar field which is made up of the heliostat arrays, the receiver tower, the heat transfer fluid, the molten salt thermal energy storage tanks and the power conversion unit, which is made up of the turbine and the generator. The main advantage of CSP is that of a cheap thermal storage (i.e., molten salt storage) which makes it possible to dispatch power at a cost comparable to the grid electricity. Simulations run with the SAM (systems advisory model) developed by NREL (National Renewable Energy Laboratory) showed that CSP is capable of delivering electricity at the cost of 17UScents per kWh for the 30-year life of the plant. The main disadvantage of CSP however, is that of low efficiency (8%-16%). There are ongoing research works to improve the efficiency of the CSP. One way to improve the efficiency is to increase the operating temperature of the system. In this paper, the authors discussed different modules of the CSP plant and suggested ways to improve on the conversion efficiencies of individual modules. Finally, an overall systems performance simulation is carried using SAM and the simulation results show that electricity can be produced using CSP at the cost of RI.05 per kWh.
基金supported by the National Natural Science Foundation of China(Grant No.51667013)the Science and Technology Project of State Grid Corporation of China(Grant No.52272219000V).
文摘There are two prominent features in the process of temperature control in solar collector field.Firstly,the dynamic model of solar collector field is nonlinear and complex,which needs to be simplified.Secondly,there are a lot of random and uncontrollable,measurable and unmeasurable disturbances in solar collector field.This paper uses Taylor formula and difference approximation method to design a dynamic matrix predictive control(DMC)by linearizing and discretizing the dynamic model of the solar collector field.In addition,the purpose of controlling the stability of the outlet solar field salt temperature is achieved by adjusting the mass flow of molten salt.In order to further improve the ability of the system to suppress unmeasured disturbances,a steady-state Kalman filter is designed to estimate state variables,so that the system has better stability and robustness.The simulation verification results show that the DMC control system based on Kamlan filtering has better control effect than the traditional DMC control system.In the case of large fluctuations in solar radiation intensity and consideration of undetectable interference,the overshoot of the system is reduced by 4%and the rise time remains unchanged.
文摘During the calendar year of 2012 the University of Louisiana at Lafayette in conjunction with CLECO Power LLC (CLECO) has constructed and commissioned a pilot scale parabolic trough solar thermal power plant for the first time in Louisiana. The large aperture trough (LAT) solar collectors were provided by Gossamer Space Frames and are coupled with an organic Rankine cycle (ORC) power block provided by ElectraTherm, Inc. for study of the feasibility of cost-effective commercial scale solar thermal power production in Louisiana. Supported by CLECO and providing power to the existing CLECO grid, the implementation of state-of-the-industry collector frames, mirrors, trackers, and ORC power block is studied under various local weather conditions which present varied operating regimes from existing solar thermal installations. The solar collectors provide a design output of 650 kWth and preliminary actual performance data from the system level is presented. The optimal size, configuration and location for such a plant in the given solar resource region are being studied in conjunction with CLECO’s search for optimal renewable energy solutions for the region. The pilot scale size of the facility and implementation of the simpler ORC allow remote operation of the facility and flexibility in operating parameters for optimization studies. The construction of the facility was supported by the Louisiana Department of Natural Resources, the U.S. Department of Energy, and CLECO. The continued operation of the plant is supported by CLECO Power LLC and the University of Louisiana at Lafayette.
文摘There are a few standards reported in the literature for testing and evaluation of thermal performance of solar concentrators based on sensible heating of working fluid. The preceding standard measures only the cooking efficiency and cooking capacity. Apart from thermal efficiency, there is an imperative need for other important parameters of the solar concentrators such as its stagnation temperature, cooking capacity, cost per watts delivered, weight of the cooker, ease of handling and aesthetics. The characterization of a concentrator at its operating temperature settles appropriate size and type of concentrator for any thermal application. The performance test is conducted at Chandwad (20.3292°N, 74.2444°E), Maharashtra and the proposed protocol aims for evaluation of thermal performance of solar cooking system and standardization of reporting the test results so that anyone can easily recognize and use it.
文摘Concentrating solar power (CSP) technologies could be one of the major contributor to worlds future energy needs and which would be cheap and clean sources of energy. This would improve energy utilization, higher conversion efficiency with reliable and affordable supply of electricity to the public. The proposed approach is using 18 inch diameter of solar dish concentrator to measure the solar radiation using the aluminium foil as a reflector. In this paper, solar radiation is collected to investigate the solar fraction on incoming solar energy in wet climate.
基金supported by the Major Program of the National Natural Science Foundation of China(Grant No.52090060).
文摘This paper proposes a new power generating system that combines wind power(WP),photovoltaic(PV),trough concentrating solar power(CSP)with a supercritical carbon dioxide(S-CO_(2))Brayton power cycle,a thermal energy storage(TES),and an electric heater(EH)subsystem.The wind power/photovoltaic/concentrating solar power(WP-PV-CSP)with the S-CO_(2) Brayton cycle system is powered by renewable energy.Then,it constructs a bi-level capacity-operation collaborative optimization model and proposes a non-dominated sorting genetic algorithm-Ⅱ(NSGA-Ⅱ)nested linear programming(LP)algorithm to solve this optimization problem,aiming to obtain a set of optimal capacity configurations that balance carbon emissions,economics,and operation scheduling.Afterwards,using Zhangbei area,a place in China which has significant wind and solar energy resources as a practical application case,it utilizes a bi-level optimization model to improve the capacity and annual load scheduling of the system.Finally,it establishes three reference systems to compare the annual operating characteristics of the WP-PV-CSP(S-CO_(2))system,highlighting the benefits of adopting the S-CO_(2) Brayton cycle and equipping the system with EH.After capacity-operation collaborative optimization,the levelized cost of energy(LCOE)and carbon emissions of the WP-PV-CSP(S-CO_(2))system are decreased by 3.43%and 92.13%,respectively,compared to the reference system without optimization.
文摘随着“双碳”目标不断推进,可再生能源的装机容量和发电占比不断增加。然而,以风电、光伏为代表的可再生能源所固有的不确定性和波动性,使得以火电机组深度调峰为主的传统运行方式的经济性难以得到保障。针对上述问题,提出一种含聚合光热发电(Concentrating Solar Power,CSP)和深度调峰火电机组的电力系统分布鲁棒机会约束优化调度方法。首先,分析火电机组的基本调峰和深度调峰能力,构建考虑火电机组进行基本调峰或深度调峰成本的深度调峰模型。其次,分析光热电站启动时的热量传递过程,构建考虑启动热量约束的CSP模型。在此基础上,采用基于数据驱动的分布鲁棒机会约束描述可再生能源出力的不确定性,构建以火电机组发电成本、购售电成本和储能使用成本之和最小为优化目标的调度模型。最后,以改进的IEEE 30节点系统为例验证了所提方法具有较好的经济性和鲁棒性。
基金supported by the National Natural Science Foundation of China (Grant Nos. 51876061, 51821004)the Fundamental Research Funds for the Central Universities (Grant No. 2018ZD04)
文摘Concentrating photovoltaic/concentrating solar power(CPV/CSP)systems suffer from varying irradiation and extreme working conditions.In this study,a dynamic physical model is developed for the CPV/CSP hybrid system to analyze the dynamic responses of several key parameters,such as the solar radiation saltation or linear variation to represent the typical weather variations.The results show that the hybrid system could rapidly reach the steady state in less than about 53 s after the solar radiation saltation increases or decreases by 10%.The response time reflects that the thermal hysteresis of the hybrid system is mainly determined by varying the outlet temperature of R134a from the solar thermal receiver.Meanwhile,when the solar radiation changes linearly,a lower gradient is beneficial to remit the thermal hysteresis of the hybrid system and improve the thermal stability,and the parameters could be treated as the steady state values with a gradient of less than 0.2 W m^-2 s^-1.Afterward,the quasi-steady state model was used to analyze the all-day dynamic performance of the hybrid system.It shows that the power output and the flow rate are directly related to the direct normal irradiance(DNI),while the outlet temperature of R134a vapor could be almost constant except for the starting and stopping periods.