期刊文献+
共找到77篇文章
< 1 2 4 >
每页显示 20 50 100
A Robust Zero-Watermarking Based on SIFT-DCT for Medical Images in the Encrypted Domain 被引量:5
1
作者 Jialing Liu Jingbing Li +4 位作者 Yenwei Chen Xiangxi Zou Jieren Cheng Yanlin Liu Uzair Aslam Bhatti 《Computers, Materials & Continua》 SCIE EI 2019年第7期363-378,共16页
Remote medical diagnosis can be realized by using the Internet,but when transmitting medical images of patients through the Internet,personal information of patients may be leaked.Aim at the security of medical inform... Remote medical diagnosis can be realized by using the Internet,but when transmitting medical images of patients through the Internet,personal information of patients may be leaked.Aim at the security of medical information system and the protection of medical images,a novel robust zero-watermarking based on SIFT-DCT(Scale Invariant Feature Transform-Discrete Cosine Transform)for medical images in the encrypted domain is proposed.Firstly,the original medical image is encrypted in transform domain based on Logistic chaotic sequence to enhance the concealment of original medical images.Then,the SIFT-DCT is used to extract the feature sequences of encrypted medical images.Next,zero-watermarking technology is used to ensure that the region of interest of medical images are not changed.Finally,the robust of the algorithm is evaluated by the correlation coefficient between the original watermark and the attacked watermark.A series of attack experiments are carried out on this method,and the results show that the algorithm is not only secure,but also robust to both traditional and geometric attacks,especially in clipping attacks. 展开更多
关键词 ROBUSTNESS ct image ZERO-WATERMARKING SIFT-Dct encrypted domain
下载PDF
Computer‑aided CT image processing and modeling method for tibia microstructure 被引量:3
2
作者 Pengju Wang Su Wang 《Bio-Design and Manufacturing》 CSCD 2020年第1期71-82,共12页
We present a method for computed tomography(CT)image processing and modeling for tibia microstructure,achieved by using computer graphics and fractal theory.Given the large-scale image data of tibia species with DICOM... We present a method for computed tomography(CT)image processing and modeling for tibia microstructure,achieved by using computer graphics and fractal theory.Given the large-scale image data of tibia species with DICOM standard for clinical applications,we take advantage of algorithms such as image binarization,hot pixel removing and close operation to obtain visually clear image for tibia microstructure.All of these images are based on 20 CT scanning images with 30μm slice thickness and 30μm interval and continuous changes in pores.For each pore,we determine its profile by using an improved algorithm for edge detection.Then,to calculate its three-dimensional fractal dimension,we measure the circumference perimeter and area of the pores of bone microstructure using a line fitting method based on the least squares.Subsequently,we put forward an algorithm for the pore profiles through ellipse fitting.The results show that the pores have significant fractal characteristics because of the good linear correlation between the perimeter and the area parameters in log–log scale coordinates system,and the ratio of the elliptical short axis to the long axis through ellipse fitting tends to 0.6501.Based on support vector machine and structural risk minimization principle,we put forward a mapping database theory of structure parameters among the pores of CT images and fractal dimension,Poisson’s ratios,porosity and equivalent aperture.On this basis,we put forward a new concept for 3D modeling called precision-measuring digital expressing to reconstruct tibia microstructure for human hard tissue. 展开更多
关键词 TIBIA ct image processing Fractal dimension Support vector machine 3D modeling
下载PDF
Study of the impact of CT/CT image fusion radiotherapy on V_(20) and radiation pneumonitis of non-small cell lung cancer 被引量:2
3
作者 Liang Liu Jinzhong Zhang +4 位作者 Changhu Li Wei Ge Shunxiang Luo Yu Huang Yongfa Zheng 《The Chinese-German Journal of Clinical Oncology》 CAS 2012年第2期72-75,共4页
Objective:The aim of our study was to investigate the value of CT/CT image fusion radiation treatment planning in non-small cell lung cancer(NSCLC) and the impact on V20 and radiation pneumonitis(RP).Methods:Patients ... Objective:The aim of our study was to investigate the value of CT/CT image fusion radiation treatment planning in non-small cell lung cancer(NSCLC) and the impact on V20 and radiation pneumonitis(RP).Methods:Patients who were pathologically or cytologically diagnosed of stage IIIA and IIIB NSCLC were treated with three-dimensional conformal radiation therapy(4000 cGy).Forty patients got at least 25% tumor reduction were randomly divided into two groups:group A of regular shrink field radiotherapy(20 cases) and group B of CT/CT image fused shrink field radiotherapy(20 cases).Dosage reached 6600 cGy.Clinical data,V20 and RP were observed within 3 months after radiotherapy.Statistical analysis was conducted for the NSCLC patients.Results:22.5%(9/40) patients got RP during follow-up.Group A accounted for 6 cases(30%),and group B had 3 cases(15%).There was no marked difference between the two groups(P = 0.256),univariate analysis revealed that the IV20 of A and B groups,and IV20 and CV20 of all patients were statistically related to the incidence of RP(P < 0.05).With Wilcoxon method assay,the ipsilateral lung V20 and contralateral lung V20 had statistical significance between the two groups(P < 0.05).Conclusion:The CT/CT image infusion treatment planning could increase the radical dosage with better tumor control probability but won't increase adverse reaction. 展开更多
关键词 non-small cell lung cancer three-dimensional conformal radiation therapy radiation pneumonitis ct/ct image fusion V20
下载PDF
Low-Dose CT Image Denoising Based on Improved WGAN-gp 被引量:3
4
作者 Xiaoli Li Chao Ye +1 位作者 Yujia Yan Zhenlong Du 《Journal of New Media》 2019年第2期75-85,共11页
In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the co... In order to improve the quality of low-dose computational tomography (CT)images, the paper proposes an improved image denoising approach based on WGAN-gpwith Wasserstein distance. For improving the training and the convergence efficiency, thegiven method introduces the gradient penalty term to WGAN network. The novelperceptual loss is introduced to make the texture information of the low-dose imagessensitive to the diagnostician eye. The experimental results show that compared with thestate-of-art methods, the time complexity is reduced, and the visual quality of low-doseCT images is significantly improved. 展开更多
关键词 WGAN-gp low-dose ct image image denoising Wasserstein distance
下载PDF
The Use of Artificial Intelligence on Segmental Volumes, Constructed from MRI and CT Images, in the Diagnosis and Staging of Cervical Cancers and Thyroid Cancers: A Study Protocol for a Randomized Controlled Trial 被引量:2
5
作者 Tudor Florin Ursuleanu Andreea Roxana Luca +5 位作者 Liliana Gheorghe Roxana Grigorovici Stefan Iancu Maria Hlusneac Cristina Preda Alexandru Grigorovici 《Journal of Biomedical Science and Engineering》 2021年第6期300-304,共5页
<span style="font-family:Verdana;">Rationale and Objectives: Accurately establishing the diagnosis and staging of cervical and thyroid cancers is essential in medical practice in determining tumor exte... <span style="font-family:Verdana;">Rationale and Objectives: Accurately establishing the diagnosis and staging of cervical and thyroid cancers is essential in medical practice in determining tumor extension and dissemination and involves the most accurate and effective therapeutic approach. For accurate diagnosis and staging of cervical and thyroid cancers, we aim to create a diagnostic method, optimized by the algorithms of artificial intelligence and validated by achieving accurate and favorable results by conducting a clinical trial, during which we will use the diagnostic method optimized by artificial intelligence (AI) algorithms, to avoid errors, to increase the understanding on interpretation computer tomography (CT) scan, magnetic resonance imaging (MRI) of the doctor and improve therapeutic planning. Materials and Methods: The optimization of the computer assisted diagnosis (CAD) method will consist in the development and formation of artificial intelligence models, using algorithms and tools used in segmental volumetric constructions to generate 3D images from MRI/CT. We propose a comparative study of current developments in “DICOM” image processing by volume rendering technique, the use of the transfer function for opacity and color, shades of gray from “DICOM” images projected in a three-dimensional space. We also use artificial intelligence (AI), through the technique of Generative Adversarial Networks (GAN), which has proven to be effective in representing complex data distributions, as we do in this study. Validation of the diagnostic method, optimized by algorithm of artificial intelligence will consist of achieving accurate results on diagnosis and staging of cervical and thyroid cancers by conducting a randomized, controlled clinical trial, for a period of 17 months. Results: We will validate the CAD method through a clinical study and, secondly, we use various network topologies specified above, which have produced promising results in the tasks of image model recognition and by using this mixture. By using this method in medical practice, we aim to avoid errors, provide precision in diagnosing, staging and establishing the therapeutic plan in cancers of the cervix and thyroid using AI. Conclusion: The use of the CAD method can increase the quality of life by avoiding intra and postoperative complications in surgery, intraoperative orientation and the precise determination of radiation doses and irradiation zone in radiotherapy.</span> 展开更多
关键词 Artificial Intelligence Cervical Cancer Thyroid Cancer MRI images ct images
下载PDF
A Robust Automated Framework for Classification of CT Covid-19 Images Using MSI-ResNet 被引量:1
6
作者 Aghila Rajagopal Sultan Ahmad +3 位作者 Sudan Jha Ramachandran Alagarsamy Abdullah Alharbi Bader Alouffi 《Computer Systems Science & Engineering》 SCIE EI 2023年第6期3215-3229,共15页
Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological i... Nowadays,the COVID-19 virus disease is spreading rampantly.There are some testing tools and kits available for diagnosing the virus,but it is in a lim-ited count.To diagnose the presence of disease from radiological images,auto-mated COVID-19 diagnosis techniques are needed.The enhancement of AI(Artificial Intelligence)has been focused in previous research,which uses X-ray images for detecting COVID-19.The most common symptoms of COVID-19 are fever,dry cough and sore throat.These symptoms may lead to an increase in the rigorous type of pneumonia with a severe barrier.Since medical imaging is not suggested recently in Canada for critical COVID-19 diagnosis,computer-aided systems are implemented for the early identification of COVID-19,which aids in noticing the disease progression and thus decreases the death rate.Here,a deep learning-based automated method for the extraction of features and classi-fication is enhanced for the detection of COVID-19 from the images of computer tomography(CT).The suggested method functions on the basis of three main pro-cesses:data preprocessing,the extraction of features and classification.This approach integrates the union of deep features with the help of Inception 14 and VGG-16 models.At last,a classifier of Multi-scale Improved ResNet(MSI-ResNet)is developed to detect and classify the CT images into unique labels of class.With the support of available open-source COVID-CT datasets that consists of 760 CT pictures,the investigational validation of the suggested method is estimated.The experimental results reveal that the proposed approach offers greater performance with high specificity,accuracy and sensitivity. 展开更多
关键词 Covid-19 ct images multi-scale improved ResNet AI inception 14 and VGG-16 models
下载PDF
Liver Hydatid CT Image Segmentation Using Smoothed Bayesian Classification Method and Modified Parametric Active Contour Model 被引量:2
7
作者 HU Yan-ting HAMIT· Murat +3 位作者 CHEN Jian-jun SUN Jing JI Jin-hu KONG De-wei 《Chinese Journal of Biomedical Engineering(English Edition)》 2010年第4期139-147,155,共10页
Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentatio... Liver hydatid disease is a common parasitic disease in farm and pastoral areas, which seriously influences people's health. Based on CT imaging features of this disease, an iterative approach for liver segmentation and hydatid lesion extraction simultaneously is proposed. In each iteration, our algorithm consists of two main steps: 1) according to the user-defined pixel seeds in the liver and hydatid lesion, Gaussian probability model fitting and smoothed Bayesian classification are applied to get initial segmentation of liver and lesion; 2) the parametric active contour model using priori shape force field is adopted to refine initial segmentation. We make subjective and objective evaluation on the proposed algorithm validity by the experiments of liver and hydatid lesion segmentation on different patients' CT slices. In comparison with ground-truth manual segmentation results, the experimental results show the effectiveness of our method to segment liver and hydatid lesion. 展开更多
关键词 liver hydatid disease ct image segmentation Bayesian classification active contour model
下载PDF
A Preliminary Study of Automatic Delineation of Eyes on CT Images Using Ant Colony Optimization 被引量:2
8
作者 李永杰 谢维夫 尧德中 《Journal of Electronic Science and Technology of China》 2007年第1期66-69,共4页
Eyes are important organs-at-risk (OARs) that should be protected during the radiation treatment of those head tumors. Correct delineation of the eyes on CT images is one of important issues for treatment planning t... Eyes are important organs-at-risk (OARs) that should be protected during the radiation treatment of those head tumors. Correct delineation of the eyes on CT images is one of important issues for treatment planning to protect the eyes as much as possible. In this paper, we propose a new method, named ant colony optimization (ACO), to delineate the eyes automatically. In the proposed algorithm, each ant tries to find a closed path, and some pheromone is deposited on the visited path when the ant fmds a path. After all ants fmish a circle, the best ant will lay some pheromone to enforce the best path. The proposed algorithm is verified on several CT images, and the preliminary results demonstrate the feasibility of ACO for the delineation problem. 展开更多
关键词 automatic delineation ct images ant colony optimization
下载PDF
Study on threshold segmentation of multi-resolution 3D human brain CT image
9
作者 Ling-ling Cui Hui Zhang 《Journal of Innovative Optical Health Sciences》 SCIE EI CAS 2018年第6期78-86,共9页
In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel ... In order to effectively improve the pathological diagnosis capability and feature resolution of 3D human brain CT images,a threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is proposed in this paper.In this method,first,original 3D human brain image information is collected,and CT image filtering is performed to the collected information through the gradient value decomposition method,and edge contour features of the 3D human brain CT image are extracted.Then,the threshold segmentation method is adopted to segment the regional pixel feature block of the 3D human brain CT image to segment the image into block vectors with high-resolution feature points,and the 3D human brain CT image is reconstructed with the salient feature point as center.Simulation results show that the method proposed in this paper can provide accuracy up to 100%when the signal-to-noise ratio is 0,and with the increase of signal-to-noise ratio,the accuracy provided by this method is stable at 100%.Comparison results show that the threshold segmentation method of multi-resolution 3D human brain CT image based on edge pixel grayscale feature decomposition is signicantly better than traditional methods in pathological feature estimation accuracy,and it effectively improves the rapid pathological diagnosis and positioning recognition abilities to CT images. 展开更多
关键词 MULTI-RESOLUTION 3D human brain ct image SEGMENTATION feature extraction RECOGNITION
下载PDF
An AW-HARIS Based Automated Segmentation of Human Liver Using CT Images
10
作者 P.Naga Srinivasu Shakeel Ahmed +2 位作者 Abdulaziz Alhumam Akash Bhoi Kumar Muhammad Fazal Ijaz 《Computers, Materials & Continua》 SCIE EI 2021年第12期3303-3319,共17页
In the digestion of amino acids,carbohydrates,and lipids,as well as protein synthesis from the consumed food,the liver has many diverse responsibilities and functions that are to be performed.Liver disease may impact ... In the digestion of amino acids,carbohydrates,and lipids,as well as protein synthesis from the consumed food,the liver has many diverse responsibilities and functions that are to be performed.Liver disease may impact the hormonal and nutritional balance in the human body.The earlier diagnosis of such critical conditions may help to treat the patient effectively.A computationally efficient AW-HARIS algorithm is used in this paper to perform automated segmentation of CT scan images to identify abnormalities in the human liver.The proposed approach can recognize the abnormalities with better accuracy without training,unlike in supervisory procedures requiring considerable computational efforts for training.In the earlier stages,the CT images are pre-processed through an Adaptive Multiscale Data Condensation Kernel to normalize the underlying noise and enhance the image’s contrast for better segmentation.Then,the preliminary phase’s outcome is being fed as the input for the Anisotropic Weighted—Heuristic Algorithm for Real-time Image Segmentation algorithm that uses texture-related information,which has resulted in precise outcome with acceptable computational latency when compared to that of its counterparts.It is observed that the proposed approach has outperformed in the majority of the cases with an accuracy of 78%.The smart diagnosis approach would help the medical staff accurately predict the abnormality and disease progression in earlier ailment stages. 展开更多
关键词 ct image automated segmentation HARIS anisotropic weighted social group optimization
下载PDF
Stacked Gated Recurrent Unit Classifier with CT Images for Liver Cancer Classification
11
作者 Mahmoud Ragab Jaber Alyami 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2309-2322,共14页
Liver cancer is one of the major diseases with increased mortality in recent years,across the globe.Manual detection of liver cancer is a tedious and laborious task due to which Computer Aided Diagnosis(CAD)models hav... Liver cancer is one of the major diseases with increased mortality in recent years,across the globe.Manual detection of liver cancer is a tedious and laborious task due to which Computer Aided Diagnosis(CAD)models have been developed to detect the presence of liver cancer accurately and classify its stages.Besides,liver cancer segmentation outcome,using medical images,is employed in the assessment of tumor volume,further treatment plans,and response moni-toring.Hence,there is a need exists to develop automated tools for liver cancer detection in a precise manner.With this motivation,the current study introduces an Intelligent Artificial Intelligence with Equilibrium Optimizer based Liver cancer Classification(IAIEO-LCC)model.The proposed IAIEO-LCC technique initially performs Median Filtering(MF)-based pre-processing and data augmentation process.Besides,Kapur’s entropy-based segmentation technique is used to identify the affected regions in liver.Moreover,VGG-19 based feature extractor and Equilibrium Optimizer(EO)-based hyperparameter tuning processes are also involved to derive the feature vectors.At last,Stacked Gated Recurrent Unit(SGRU)classifier is exploited to detect and classify the liver cancer effectively.In order to demonstrate the superiority of the proposed IAIEO-LCC technique in terms of performance,a wide range of simulations was conducted and the results were inspected under different measures.The comparison study results infer that the proposed IAIEO-LCC technique achieved an improved accuracy of 98.52%. 展开更多
关键词 Liver cancer image segmentation artificial intelligence deep learning ct images parameter tuning
下载PDF
Automated COVID-19 Detection Based on Single-Image Super-Resolution and CNN Models
12
作者 Walid El-Shafai Anas M.Ali +3 位作者 El-Sayed M.El-Rabaie Naglaa F.Soliman Abeer D.Algarni Fathi E.Abd El-Samie 《Computers, Materials & Continua》 SCIE EI 2022年第1期1141-1157,共17页
In developing countries,medical diagnosis is expensive and time consuming.Hence,automatic diagnosis can be a good cheap alternative.This task can be performed with artificial intelligence tools such as deep Convolutio... In developing countries,medical diagnosis is expensive and time consuming.Hence,automatic diagnosis can be a good cheap alternative.This task can be performed with artificial intelligence tools such as deep Convolutional Neural Networks(CNNs).These tools can be used on medical images to speed up the diagnosis process and save the efforts of specialists.The deep CNNs allow direct learning from the medical images.However,the accessibility of classified data is still the largest challenge,particularly in the field of medical imaging.Transfer learning can deliver an effective and promising solution by transferring knowledge from universal object detection CNNs to medical image classification.However,because of the inhomogeneity and enormous overlap in intensity between medical images in terms of features in the diagnosis of Pneumonia and COVID-19,transfer learning is not usually a robust solution.Single-Image Super-Resolution(SISR)can facilitate learning to enhance computer vision functions,apart from enhancing perceptual image consistency.Consequently,it helps in showing the main features of images.Motivated by the challenging dilemma of Pneumonia and COVID-19 diagnosis,this paper introduces a hybrid CNN model,namely SIGTra,to generate super-resolution versions of X-ray and CT images.It depends on aGenerative Adversarial Network(GAN)for the super-resolution reconstruction problem.Besides,Transfer learning with CNN(TCNN)is adopted for the classification of images.Three different categories of chest X-ray and CT images can be classified with the proposed model.A comparison study is presented between the proposed SIGTra model and the other relatedCNNmodels for COVID-19 detection in terms of precision,sensitivity,and accuracy. 展开更多
关键词 Medical images SIGTra GAN ct and X-ray images SISR TCNN
下载PDF
A Deep Learning Interpretable Model for Novel Coronavirus Disease (COVID-19) Screening with Chest CT Images
13
作者 Eri Matsuyama 《Journal of Biomedical Science and Engineering》 2020年第7期140-152,共13页
In this article, we propose a convolutional neural network (CNN)-based model, a ResNet-50 based model, for discriminating coronavirus disease 2019 (COVID-19) from Non-COVID-19 using chest CT. We adopted the use of wav... In this article, we propose a convolutional neural network (CNN)-based model, a ResNet-50 based model, for discriminating coronavirus disease 2019 (COVID-19) from Non-COVID-19 using chest CT. We adopted the use of wavelet coefficients of the entire image without cropping any parts of the image as input to the CNN model. One of the main contributions of this study is to implement an algorithm called gradient-weighted class activation mapping to produce a heat map for visually verifying where the CNN model is looking at the image, thereby, ensuring the model is performing correctly. In order to verify the effectiveness and usefulness of the proposed method, we compare the obtained results with that obtained by using pixel values of original images as input to the CNN model. The measures used for performance evaluation include accuracy, sensitivity, specificity, positive predictive value, negative predictive value, F1 score, and Matthews correlation coefficient (MCC). The overall classification accuracy, F1 score, and MCC for the proposed method (using wavelet coefficients as input) were 92.2%, 0.915%, and 0.839%, and those for the compared method (using pixel values of the original image as input) were 88.3%, 0.876%, and 0.766%, respectively. The experiment results demonstrate the superiority of the proposed method. Moreover, as a comprehensible classification model, the interpretability of classification results was introduced. The region of interest extracted by the proposed model was visualized using heat maps and the probability score was also shown. We believe that our proposed method could provide a promising computerized toolkit to help radiologists and serve as a second eye for them to classify COVID-19 in CT scan screening examination. 展开更多
关键词 Convolutional Neural Networks Wavelet Transforms CLASSIFICATION Lung Diseases ct Imaging COVID-19
下载PDF
Multichannel Blind CT Image Restoration via Variable Splitting and Alternating Direction Method
14
作者 孙云山 张立毅 +1 位作者 张海燕 张经宇 《Transactions of Tianjin University》 EI CAS 2015年第6期524-532,共9页
Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point ... Computed tomography(CT) blurring caused by point spread function leads to errors in quantification and visualization. In this paper, multichannel blind CT image restoration is proposed to overcome the effect of point spread function. The main advantage from multichannel blind CT image restoration is to exploit the diversity and redundancy of information in different acquisitions. The proposed approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is addressed with the alternating direction method of multipliers and simply implemented in the Fourier domain. Numerical experiments illustrate that our method obtains a higher average gain value of at least 1.21 d B in terms of Q metric than the other methods, and it requires only 7 iterations of alternating minimization to obtain a fast convergence. 展开更多
关键词 blind image restoration variable splitting alternating direction method medical ct image
下载PDF
Research on Automatic Elimination of Laptop Computer in Security CT Images Based on Projection Algorithm and YOLOv7-Seg
15
作者 Fei Wang Baosheng Liu +1 位作者 Yijun Tang Lei Zhao 《Journal of Computer and Communications》 2023年第9期1-17,共17页
In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to in... In civil aviation security screening, laptops, with their intricate structural composition, provide the potential for criminals to conceal dangerous items. Presently, the security process necessitates passengers to individually present their laptops for inspection. The paper introduced a method for laptop removal. By combining projection algorithms with the YOLOv7-Seg model, a laptop’s three views were generated through projection, and instance segmentation of these views was achieved using YOLOv7-Seg. The resulting 2D masks from instance segmentation at different angles were employed to reconstruct a 3D mask through angle restoration. Ultimately, the intersection of this 3D mask with the original 3D data enabled the successful extraction of the laptop’s 3D information. Experimental results demonstrated that the fusion of projection and instance segmentation facilitated the automatic removal of laptops from CT data. Moreover, higher instance segmentation model accuracy leads to more precise removal outcomes. By implementing the laptop removal functionality, the civil aviation security screening process becomes more efficient and convenient. Passengers will no longer be required to individually handle their laptops, effectively enhancing the efficiency and accuracy of security screening. 展开更多
关键词 Instance Segmentation PROJEctION ct image 3D Segmentation Real-Time Detection
下载PDF
MCIF-Transformer Mask RCNN:Multi-Branch Cross-Scale Interactive Feature Fusion Transformer Model for PET/CT Lung Tumor Instance Segmentation
16
作者 Huiling Lu Tao Zhou 《Computers, Materials & Continua》 SCIE EI 2024年第6期4371-4393,共23页
The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are ... The precise detection and segmentation of tumor lesions are very important for lung cancer computer-aided diagnosis.However,in PET/CT(Positron Emission Tomography/Computed Tomography)lung images,the lesion shapes are complex,the edges are blurred,and the sample numbers are unbalanced.To solve these problems,this paper proposes a Multi-branch Cross-scale Interactive Feature fusion Transformer model(MCIF-Transformer Mask RCNN)for PET/CT lung tumor instance segmentation,The main innovative works of this paper are as follows:Firstly,the ResNet-Transformer backbone network is used to extract global feature and local feature in lung images.The pixel dependence relationship is established in local and non-local fields to improve the model perception ability.Secondly,the Cross-scale Interactive Feature Enhancement auxiliary network is designed to provide the shallow features to the deep features,and the cross-scale interactive feature enhancement module(CIFEM)is used to enhance the attention ability of the fine-grained features.Thirdly,the Cross-scale Interactive Feature fusion FPN network(CIF-FPN)is constructed to realize bidirectional interactive fusion between deep features and shallow features,and the low-level features are enhanced in deep semantic features.Finally,4 ablation experiments,3 comparison experiments of detection,3 comparison experiments of segmentation and 6 comparison experiments with two-stage and single-stage instance segmentation networks are done on PET/CT lung medical image datasets.The results showed that APdet,APseg,ARdet and ARseg indexes are improved by 5.5%,5.15%,3.11%and 6.79%compared with Mask RCNN(resnet50).Based on the above research,the precise detection and segmentation of the lesion region are realized in this paper.This method has positive significance for the detection of lung tumors. 展开更多
关键词 PET/ct images instance segmentation mask RCNN interactive fusion TRANSFORMER
下载PDF
Transparent and Accurate COVID-19 Diagnosis:Integrating Explainable AI with Advanced Deep Learning in CT Imaging
17
作者 Mohammad Mehedi Hassan Salman A.AlQahtani +1 位作者 Mabrook S.AlRakhami Ahmed Zohier Elhendi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第6期3101-3123,共23页
In the current landscape of the COVID-19 pandemic,the utilization of deep learning in medical imaging,especially in chest computed tomography(CT)scan analysis for virus detection,has become increasingly significant.De... In the current landscape of the COVID-19 pandemic,the utilization of deep learning in medical imaging,especially in chest computed tomography(CT)scan analysis for virus detection,has become increasingly significant.Despite its potential,deep learning’s“black box”nature has been a major impediment to its broader acceptance in clinical environments,where transparency in decision-making is imperative.To bridge this gap,our research integrates Explainable AI(XAI)techniques,specifically the Local Interpretable Model-Agnostic Explanations(LIME)method,with advanced deep learning models.This integration forms a sophisticated and transparent framework for COVID-19 identification,enhancing the capability of standard Convolutional Neural Network(CNN)models through transfer learning and data augmentation.Our approach leverages the refined DenseNet201 architecture for superior feature extraction and employs data augmentation strategies to foster robust model generalization.The pivotal element of our methodology is the use of LIME,which demystifies the AI decision-making process,providing clinicians with clear,interpretable insights into the AI’s reasoning.This unique combination of an optimized Deep Neural Network(DNN)with LIME not only elevates the precision in detecting COVID-19 cases but also equips healthcare professionals with a deeper understanding of the diagnostic process.Our method,validated on the SARS-COV-2 CT-Scan dataset,demonstrates exceptional diagnostic accuracy,with performance metrics that reinforce its potential for seamless integration into modern healthcare systems.This innovative approach marks a significant advancement in creating explainable and trustworthy AI tools for medical decisionmaking in the ongoing battle against COVID-19. 展开更多
关键词 Explainable AI COVID-19 ct images deep learning
下载PDF
Designing a High-Performance Deep Learning Theoretical Model for Biomedical Image Segmentation by Using Key Elements of the Latest U-Net-Based Architectures
18
作者 Andreea Roxana Luca Tudor Florin Ursuleanu +5 位作者 Liliana Gheorghe Roxana Grigorovici Stefan Iancu Maria Hlusneac Cristina Preda Alexandru Grigorovici 《Journal of Computer and Communications》 2021年第7期8-20,共13页
Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentat... Deep learning (DL) has experienced an exponential development in recent years, with major impact in many medical fields, especially in the field of medical image and, respectively, as a specific task, in the segmentation of the medical image. We aim to create a computer assisted diagnostic method, optimized by the use of deep learning (DL) and validated by a randomized controlled clinical trial, is a highly automated tool for diagnosing and staging precancerous and cervical cancer and thyroid cancers. We aim to design a high-performance deep learning model, combined from convolutional neural network (U-Net)-based architectures, for segmentation of the medical image that is independent of the type of organs/tissues, dimensions or type of image (2D/3D) and to validate the DL model in a randomized, controlled clinical trial. We used as a methodology primarily the analysis of U-Net-based architectures to identify the key elements that we considered important in the design and optimization of the combined DL model, from the U-Net-based architectures, imagined by us. Secondly, we will validate the performance of the DL model through a randomized controlled clinical trial. The DL model designed by us will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. The combined model we designed takes into account the key features of each of the architectures Overcomplete Convolutional Network Kite-Net (Kite-Net), Attention gate mechanism is an improvement added on convolutional network architecture for fast and precise segmentation of images (Attention U-Net), Harmony Densely Connected Network-Medical image Segmentation (HarDNet-MSEG). In this regard, we will create a comprehensive computer assisted diagnostic methodology validated by a randomized controlled clinical trial. The model will be a highly automated tool for diagnosing and staging precancers and cervical cancer and thyroid cancers. This would help drastically minimize the time and effort that specialists put into analyzing medical images, help to achieve a better therapeutic plan, and can provide a “second opinion” of computer assisted diagnosis. 展开更多
关键词 Combined Model of U-Net-Based Architectures Medical image Segmentation 2D/3D/ct/RMN images
下载PDF
A Simple Computational Approach for the Texture Analysis of CT Scan Images Using Orthogonal Moments
19
作者 Nallasivan Gomathinayagam Janakiraman Subbiah 《Circuits and Systems》 2016年第8期1884-1892,共9页
This paper is a study on texture analysis of Computer Tomography (CT) liver images using orthogonal moment features. Orthogonal moments are used as image feature representation in many applications like invariant patt... This paper is a study on texture analysis of Computer Tomography (CT) liver images using orthogonal moment features. Orthogonal moments are used as image feature representation in many applications like invariant pattern recognition of images. Orthogonal moments are proposed here for the diagnosis of any abnormalities on the CT images. The objective of the proposed work is to carry out the comparative study of the performance of orthogonal moments like Zernike, Racah and Legendre moments for the detection of abnormal tissue on CT liver images. The Region of Interest (ROI) based segmentation and watershed segmentation are applied to the input image and the features are extracted with the orthogonal moments and analyses are made with the combination of orthogonal moment with segmentation that provides better accuracy while detecting the tumor. This computational model is tested with many inputs and the performance of the orthogonal moments with segmentation for the texture analysis of CT scan images is computed and compared. 展开更多
关键词 Orthogonal Moments ct Scan images ROI and Watershed Segmentation Feature Extraction ACCURACY
下载PDF
Predicting 3D Radiotherapy Dose-Volume Based on Deep Learning
20
作者 Do Nang Toan Lam Thanh Hien +2 位作者 Ha Manh Toan Nguyen Trong Vinh Pham Trung Hieu 《Intelligent Automation & Soft Computing》 2024年第2期319-335,共17页
Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill ... Cancer is one of the most dangerous diseaseswith highmortality.One of the principal treatments is radiotherapy by using radiation beams to destroy cancer cells and this workflow requires a lot of experience and skill from doctors and technicians.In our study,we focused on the 3D dose prediction problem in radiotherapy by applying the deeplearning approach to computed tomography(CT)images of cancer patients.Medical image data has more complex characteristics than normal image data,and this research aims to explore the effectiveness of data preprocessing and augmentation in the context of the 3D dose prediction problem.We proposed four strategies to clarify our hypothesis in different aspects of applying data preprocessing and augmentation.In strategies,we trained our custom convolutional neural network model which has a structure inspired by the U-net,and residual blocks were also applied to the architecture.The output of the network is added with a rectified linear unit(Re-Lu)function for each pixel to ensure there are no negative values,which are absurd with radiation doses.Our experiments were conducted on the dataset of the Open Knowledge-Based Planning Challenge which was collected from head and neck cancer patients treatedwith radiation therapy.The results of four strategies showthat our hypothesis is rational by evaluating metrics in terms of the Dose-score and the Dose-volume histogram score(DVH-score).In the best training cases,the Dose-score is 3.08 and the DVH-score is 1.78.In addition,we also conducted a comparison with the results of another study in the same context of using the loss function. 展开更多
关键词 ct image 3D dose prediction data preprocessing augmentation
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部