期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Value of helical CT volume rendering technique in post-operative evaluation of screw in screw fixation of axis fractures
1
作者 许崇永 《外科研究与新技术》 2005年第3期173-173,共1页
To explore the value of helical CT volume rendering technique (VRT) in post-operative evaluation of screw fixation of axis fractures.Methods There were 21 cases of screw fixation of axis fractures between February 200... To explore the value of helical CT volume rendering technique (VRT) in post-operative evaluation of screw fixation of axis fractures.Methods There were 21 cases of screw fixation of axis fractures between February 2002 and May 2004 in the study including six cases with fractures on axis body,five on odontoid process and 10 on axis body and odontoid process.All cases received X-ray plain film,helical CT scanning,multi-planar reformatting(MPR) and VRT.Results Screw fixation through axis body and massa lateralis atlantis was performed in 10 cases and that through axis body and odontoid process in 11.VRT could clearly display full aperture of screw orbit,location of screw and angle of fixation and hence was superior to X-ray plain film and MPR.Multi-angle VRT displayed asymmetrical space of odontoid process and massa lateralis atlantis in four cases and medial deviation of 2~5 mm of half screw in screw fixation through axis body and massa lateralis atlantis in six.Conclusion VRT can eliminate false shadow of fixation screw,clearly display full aperture of screw orbit and hence supply improtant imaging evidence for post-operative evaluation of screw fixation of axis fractures.7 refs,1 fig,1 tab. 展开更多
关键词 Value of helical ct volume rendering technique in post-operative evaluation of screw in screw fixation of axis fractures
下载PDF
Generation of linear and nonlinear waves in numerical wave tank using clustering technique-volume of fluid method 被引量:1
2
作者 H.SAGHI M.J.KETABDARI S.BOOSHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第9期1179-1190,共12页
A two-dimensional (2D) numerical model is developed for the wave sim- ulation and propagation in a wave flume. The fluid flow is assumed to be viscous and incompressible, and the Navier-Stokes and continuity equatio... A two-dimensional (2D) numerical model is developed for the wave sim- ulation and propagation in a wave flume. The fluid flow is assumed to be viscous and incompressible, and the Navier-Stokes and continuity equations are used as the governing equations. The standard k-e model is used to model the turbulent flow. The Navier- Stokes equations are discretized using the staggered grid finite difference method and solved by the simplified marker and cell (SMAC) method. Waves are generated and propagated using a piston type wave maker. An open boundary condition is used at the end of the numerical flume. Some standard tests, such as the lid-driven cavity, the constant unidirectional velocity field, the shearing flow, and the dam-break on the dry bed, are performed to valid the model. To demonstrate the capability and accuracy of the present method, the results of generated waves are compared with available wave theories. Finally, the clustering technique (CT) is used for the mesh generation, and the best condition is suggested. 展开更多
关键词 numerical wave tank free surface simulation Navier-Stokes equation stag-gered grid clustering technique ct wave generation
下载PDF
Spatial gradient distributions of thermal shock-induced damage to granite 被引量:16
3
作者 Lifeng Fan Jingwei Gao +1 位作者 Xiuli Du Zhijun Wu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期917-926,共10页
In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducte... In this study,we attempted to investigate the spatial gradient distributions of thermal shock-induced damage to granite with respect to associated deterioration mechanisms.First,thermal shock experiments were conducted on granite specimens by slowly preheating the specimens to high temperatures,followed by rapid cooling in tap water.Then,the spatial gradient distributions of thermal shock-induced damage were investigated by computed tomography(CT)and image analysis techniques.Finally,the influence of the preheating temperature on the spatial gradients of the damage was discussed.The results show that the thermal shock induced by rapid cooling can cause more damage to granite than that induced by slow cooling.The thermal shock induced by rapid cooling can cause spatial gradient distributions of the damage to granite.The damage near the specimen surface was at a maximum,while the damage inside the specimen was at a minimum.In addition,the preheating temperature can significantly influence the spatial gradient distributions of the thermal shock-induced damage.The spatial gradient distribution of damage increased as the preheating temperature increased and then decreased significantly over 600C.When the preheating temperature was sufficiently high(e.g.800C),the gradient can be ignored. 展开更多
关键词 Rock properties Thermal shock High temperature Thermally induced damage Computed tomography(ct)technique
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部