期刊文献+
共找到12,983篇文章
< 1 2 250 >
每页显示 20 50 100
Nonlinear Registration of Brain Magnetic Resonance Images with Cross Constraints of Intensity and Structure
1
作者 Han Zhou HongtaoXu +2 位作者 Xinyue Chang Wei Zhang Heng Dong 《Computers, Materials & Continua》 SCIE EI 2024年第5期2295-2313,共19页
Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook se... Many deep learning-based registration methods rely on a single-stream encoder-decoder network for computing deformation fields between 3D volumes.However,these methods often lack constraint information and overlook semantic consistency,limiting their performance.To address these issues,we present a novel approach for medical image registration called theDual-VoxelMorph,featuring a dual-channel cross-constraint network.This innovative network utilizes both intensity and segmentation images,which share identical semantic information and feature representations.Two encoder-decoder structures calculate deformation fields for intensity and segmentation images,as generated by the dual-channel cross-constraint network.This design facilitates bidirectional communication between grayscale and segmentation information,enabling the model to better learn the corresponding grayscale and segmentation details of the same anatomical structures.To ensure semantic and directional consistency,we introduce constraints and apply the cosine similarity function to enhance semantic consistency.Evaluation on four public datasets demonstrates superior performance compared to the baselinemethod,achieving Dice scores of 79.9%,64.5%,69.9%,and 63.5%for OASIS-1,OASIS-3,LPBA40,and ADNI,respectively. 展开更多
关键词 Medical image registration cross constraint semantic consistency directional consistency DUAL-CHANNEL
下载PDF
GAN-DIRNet:A Novel Deformable Image Registration Approach for Multimodal Histological Images
2
作者 Haiyue Li Jing Xie +4 位作者 Jing Ke Ye Yuan Xiaoyong Pan Hongyi Xin Hongbin Shen 《Computers, Materials & Continua》 SCIE EI 2024年第7期487-506,共20页
Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial ne... Multi-modal histological image registration tasks pose significant challenges due to tissue staining operations causing partial loss and folding of tissue.Convolutional neural network(CNN)and generative adversarial network(GAN)are pivotal inmedical image registration.However,existing methods often struggle with severe interference and deformation,as seen in histological images of conditions like Cushing’s disease.We argue that the failure of current approaches lies in underutilizing the feature extraction capability of the discriminator inGAN.In this study,we propose a novel multi-modal registration approach GAN-DIRNet based on GAN for deformable histological image registration.To begin with,the discriminators of two GANs are embedded as a new dual parallel feature extraction module into the unsupervised registration networks,characterized by implicitly extracting feature descriptors of specific modalities.Additionally,modal feature description layers and registration layers collaborate in unsupervised optimization,facilitating faster convergence and more precise results.Lastly,experiments and evaluations were conducted on the registration of the Mixed National Institute of Standards and Technology database(MNIST),eight publicly available datasets of histological sections and the Clustering-Registration-Classification-Segmentation(CRCS)dataset on the Cushing’s disease.Experimental results demonstrate that our proposed GAN-DIRNet method surpasses existing approaches like DIRNet in terms of both registration accuracy and time efficiency,while also exhibiting robustness across different image types. 展开更多
关键词 Histological images registration deformable registration generative adversarial network cushing’s disease machine learning computer vision
下载PDF
Research on Detection Technology of Micro-Components on Circuit Board Based on Digital Image Processing
3
作者 Aibin Tang Yi Liu +1 位作者 Chunyin Liu Libin Yang 《Journal of Electronic Research and Application》 2024年第3期230-233,共4页
Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and R... Aiming at the stability of the circuit board image in the acquisition process,this paper realizes the accurate registration of the image to be registered and the standard image based on the SIFT feature operator and RANSAC algorithm.The device detection model and data set are established based on Faster RCNN.Finally,the number of training was continuously optimized,and when the loss function of Faster RCNN converged,the identification result of the device was obtained. 展开更多
关键词 Tiny device recognition image registration SIFT feature operator RANSAC algorithm Faster RCN
下载PDF
Projection registration of X-ray image and CT image
4
作者 张惠 罗立民 +2 位作者 舒华忠 李松毅 Pascal Haigron 《Journal of Southeast University(English Edition)》 EI CAS 2003年第1期26-30,共5页
A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is const... A methodology for alignment of an X-ray image and a CT image, based on the Chamfer 3-4 distance transform and simulated annealing optimization algorithm is presented. Firstly, an initial transformation matrix is constructed. For the convenience of computing, geometric models of the X-ray device to reconstruct the calibration matrix are used. Then, by defining the distance between the 3-D protective and the 2-D object image, we optimize this distance matching problem, using the simulated annealing algorithm. This method is also integrated into medical intra-operation, dealing with the data set acquired from 3-D image workstation and active navigation. 展开更多
关键词 image registration calibration matrix image segmentation distance transformation simulated annealing
下载PDF
Real-time continuous image guidance for endoscopic retrograde cholangiopancreatography based on 3D/2D registration and respiratory compensation
5
作者 Da-Ya Zhang Shuo Yang +4 位作者 Hai-Xiao Geng Yu-Jia Yuan Chi-Jiao Ding Jian Yang Ming-Yang Li 《World Journal of Gastroenterology》 SCIE CAS 2023年第20期3157-3167,共11页
BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces th... BACKGROUND It has been confirmed that three-dimensional(3D)imaging allows easier identification of bile duct anatomy and intraoperative guidance of endoscopic retrograde cholangiopancreatography(ERCP),which reduces the radiation dose and procedure time with improved safety.However,current 3D biliary imaging does not have good real-time fusion with intraoperative imaging,a process meant to overcome the influence of intraoperative respiratory motion and guide navigation.The present study explored the feasibility of real-time continuous image-guided ERCP.AIM To explore the feasibility of real-time continuous image-guided ERCP.METHODS We selected 23D-printed abdominal biliary tract models with different structures to simulate different patients.The ERCP environment was simulated for the biliary phantom experiment to create a navigation system,which was further tested in patients.In addition,based on the estimation of the patient’s respiratory motion,preoperative 3D biliary imaging from computed tomography of 18 patients with cholelithiasis was registered and fused in real-time with 2D fluoroscopic sequence generated by the C-arm unit during ERCP.RESULTS Continuous image-guided ERCP was applied in the biliary phantom with a registration error of 0.46 mm±0.13 mm and a tracking error of 0.64 mm±0.24mm.After estimating the respiratory motion,3D/2D registration accurately transformed preoperative 3D biliary images to each image in the X-ray image sequence in real-time in 18 patients,with an average fusion rate of 88%.CONCLUSION Continuous image-guided ERCP may be an effective approach to assist the operator and reduce the use of X-ray and contrast agents. 展开更多
关键词 Endoscopic retrograde cholangiopancreatography Three-dimensional images registration CHOLELITHIASIS Hilar cholangiocarcinoma
下载PDF
Novel registration algorithm for 3-D images captured from multiple views of object surface
6
作者 衡伟 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期411-413,共3页
A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D po... A novel algorithm of 3-D surface image registration is proposed. It makes use of the array information of 3-D points and takes vector/vertex-like features as the basis of the matching. That array information of 3-D points can be easily obtained when capturing original 3-D images. The iterative least-mean-squared (LMS) algorithm is applied to optimizing adaptively the transformation matrix parameters. These can effectively improve the registration performance and hurry up the matching process. Experimental results show that it can reach a good subjective impression on aligned 3-D images. Although the algorithm focuses primarily on the human head model, it can also be used for other objects with small modifications. 展开更多
关键词 image alignment 3-D image 3-D capture image registration iterative least-mean-squared algorithm
下载PDF
Free form deformation and symmetry constraint‐based multimodal brain image registration using generative adversarial nets
7
作者 Xingxing Zhu Mingyue Ding Xuming Zhang 《CAAI Transactions on Intelligence Technology》 SCIE EI 2023年第4期1492-1506,共15页
Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many ... Multi‐modal brain image registration has been widely applied to functional localisation,neurosurgery and computational anatomy.The existing registration methods based on the dense deformation fields involve too many parameters,which is not conducive to the exploration of correct spatial correspondence between the float and reference images.Meanwhile,the unidirectional registration may involve the deformation folding,which will result in the change of topology during registration.To address these issues,this work has presented an unsupervised image registration method using the free form deformation(FFD)and the symmetry constraint‐based generative adversarial networks(FSGAN).The FSGAN utilises the principle component analysis network‐based structural representations of the reference and float images as the inputs and uses the generator to learn the FFD model parameters,thereby producing two deformation fields.Meanwhile,the FSGAN uses two discriminators to decide whether the bilateral registration have been realised simultaneously.Besides,the symmetry constraint is utilised to construct the loss function,thereby avoiding the deformation folding.Experiments on BrainWeb,high grade gliomas,IXI and LPBA40 show that compared with state‐of‐the‐art methods,the FSGAN provides superior performance in terms of visual comparisons and such quantitative indexes as dice value,target registration error and computational efficiency. 展开更多
关键词 Free‐form deformation Generative adversarial nets Multi‐modal brain image registration Structural representation Symmetry constraint
下载PDF
Application of Opening and Closing Morphology in Deep Learning-Based Brain Image Registration
8
作者 Yue Yang Shiyu Liu +4 位作者 Shunbo Hu Lintao Zhang Jitao Li Meng Li Fuchun Zhang 《Journal of Beijing Institute of Technology》 EI CAS 2023年第5期609-618,共10页
In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant fo... In order to improve the registration accuracy of brain magnetic resonance images(MRI),some deep learning registration methods use segmentation images for training model.How-ever,the segmentation values are constant for each label,which leads to the gradient variation con-centrating on the boundary.Thus,the dense deformation field(DDF)is gathered on the boundary and there even appears folding phenomenon.In order to fully leverage the label information,the morphological opening and closing information maps are introduced to enlarge the non-zero gradi-ent regions and improve the accuracy of DDF estimation.The opening information maps supervise the registration model to focus on smaller,narrow brain regions.The closing information maps supervise the registration model to pay more attention to the complex boundary region.Then,opening and closing morphology networks(OC_Net)are designed to automatically generate open-ing and closing information maps to realize the end-to-end training process.Finally,a new registra-tion architecture,VM_(seg+oc),is proposed by combining OC_Net and VoxelMorph.Experimental results show that the registration accuracy of VM_(seg+oc) is significantly improved on LPBA40 and OASIS1 datasets.Especially,VM_(seg+oc) can well improve registration accuracy in smaller brain regions and narrow regions. 展开更多
关键词 three dimensional(3D)medical image registration deep learning opening operation closing operation MORPHOLOGY
下载PDF
Incoherent digital holographic spectral imaging with high accuracy of image pixel registration 被引量:3
9
作者 Feng-Ying Ma Xi Wang +6 位作者 Yuan-Zhuang Bu Yong-Zhi Tian Yanli Du Qiao-Xia Gong Ceyun Zhuang Jinhai Li Lei Li 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第4期240-246,共7页
Fresnel incoherent correlation holography(FINCH) is a unique three-dimensional(3D) imaging technique which has the advantages of scanning-free,high resolution,and easy matching with existing mature optical systems.In ... Fresnel incoherent correlation holography(FINCH) is a unique three-dimensional(3D) imaging technique which has the advantages of scanning-free,high resolution,and easy matching with existing mature optical systems.In this article,an incoherent digital holographic spectral imaging method with high accuracy of spectral reconstruction based on liquid crystal tunable filter(LCTF) and FINCH is proposed.Using the programmable characteristics of spatial light modulator(SLM),a series of phase masks,none of whose focal lengths changes with wavelength,is designed and made.For each wavelength of LCTF output,SLM calls three phase masks with different phase constants at the corresponding wavelength,and CCD records three holograms.The spectral images obtained by this method have a constant magnification,which can achieve pixel-level image registration,restrain image registration errors,and improve spectral reconstruction accuracy.The results show that this method can not only obtain the 3D spatial information and spectral information of the object simultaneously,but also have high accuracy of spectral reconstruction and excellent color reproducibility. 展开更多
关键词 incoherent digital holography high-precision registration spectral imaging microspectral imaging
下载PDF
Total Variation Constrained Non-Negative Matrix Factorization for Medical Image Registration 被引量:4
10
作者 Chengcai Leng Hai Zhang +2 位作者 Guorong Cai Zhen Chen Anup Basu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第5期1025-1037,共13页
This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorizati... This paper presents a novel medical image registration algorithm named total variation constrained graphregularization for non-negative matrix factorization(TV-GNMF).The method utilizes non-negative matrix factorization by total variation constraint and graph regularization.The main contributions of our work are the following.First,total variation is incorporated into NMF to control the diffusion speed.The purpose is to denoise in smooth regions and preserve features or details of the data in edge regions by using a diffusion coefficient based on gradient information.Second,we add graph regularization into NMF to reveal intrinsic geometry and structure information of features to enhance the discrimination power.Third,the multiplicative update rules and proof of convergence of the TV-GNMF algorithm are given.Experiments conducted on datasets show that the proposed TV-GNMF method outperforms other state-of-the-art algorithms. 展开更多
关键词 Data clustering dimension reduction image registration non-negative matrix factorization(NMF) total variation(TV)
下载PDF
Registration Method for CT-MR Image Based on Mutual Information 被引量:1
11
作者 张红颖 张加万 孙济洲 《Transactions of Tianjin University》 EI CAS 2007年第3期226-230,共5页
Medical image registration is important in many medical applications. Registration method based on maximization of mutual information of voxel intensities is one of the most popular methods for 3-D multi-modality medi... Medical image registration is important in many medical applications. Registration method based on maximization of mutual information of voxel intensities is one of the most popular methods for 3-D multi-modality medical image registration. Generally, the optimization process is easily trapped in local maximum, resulting in wrong registration results. In order to find the correct optimum, a new multi-resolution approach for brain image registration based on normalized mutual information is proposed. In this method, to eliminate the effect of local optima, multi-scale wavelet transformation is adopted to extract the image edge features. Then the feature images are registered, and the result at this level is taken as the initial estimate for the registration of the original images. Three-dimensional volumes are used to test the algorithm. Experimental results show that the registration strategy proposed is a robust and efficient method which can reach sub-voxel accuracy and improve the optimization speed. 展开更多
关键词 image registration edge detection mutual information wavelet transformation
下载PDF
ASRNet: Adversarial Segmentation and Registration Networks for Multispectral Fundus Images 被引量:1
12
作者 Yanyun Jiang Yuanjie Zheng +3 位作者 Xiaodan Sui Wanzhen Jiao Yunlong He Weikuan Jia 《Computer Systems Science & Engineering》 SCIE EI 2021年第3期537-549,共13页
Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball m... Multispectral imaging (MSI) technique is often used to capture imagesof the fundus by illuminating it with different wavelengths of light. However,these images are taken at different points in time such that eyeball movementscan cause misalignment between consecutive images. The multispectral imagesequence reveals important information in the form of retinal and choroidal bloodvessel maps, which can help ophthalmologists to analyze the morphology of theseblood vessels in detail. This in turn can lead to a high diagnostic accuracy of several diseases. In this paper, we propose a novel semi-supervised end-to-end deeplearning framework called “Adversarial Segmentation and Registration Nets”(ASRNet) for the simultaneous estimation of the blood vessel segmentation andthe registration of multispectral images via an adversarial learning process. ASRNet consists of two subnetworks: (i) A segmentation module S that fulfills theblood vessel segmentation task, and (ii) A registration module R that estimatesthe spatial correspondence of an image pair. Based on the segmention-drivenregistration network, we train the segmentation network using a semi-supervisedadversarial learning strategy. Our experimental results show that the proposedASRNet can achieve state-of-the-art accuracy in segmentation and registrationtasks performed with real MSI datasets. 展开更多
关键词 Deep learning deformable image registration image segmentation multispectral imaging(MSI)
下载PDF
Evaluation of Deformable Image Registration and Dose Accumulation Using Histogram Matching Algorithm between kVCT and MVCT with Helical Tomotherapy 被引量:1
13
作者 Masahide Saito Yuki Shibata +5 位作者 Naoki Sano Kengo Kuriyama Takafumi Komiyama Kan Marino Shinichi Aoki Hiroshi Onishi 《Journal of Modern Physics》 2018年第13期2274-2285,共12页
Purpose: To evaluate the accuracy of deformable image registration (DIR) between the planning kVCT (pCT) and the daily MVCT combined with the histogram matching (HM) algorithm, and evaluate the deformable dose accumul... Purpose: To evaluate the accuracy of deformable image registration (DIR) between the planning kVCT (pCT) and the daily MVCT combined with the histogram matching (HM) algorithm, and evaluate the deformable dose accumulation using a suggested method for adaptive radiotherapy with Helical Tomotharapy (HT). Methods: For five prostate cancer patients (76 Gy/38 Fr) treated with HT in our institution, seven MVCT series (a total of 35 series) acquired weekly were investigated. First, to minimize the effect of different HU values between pCT and MVCT, this image-processing method adjusts HU values between pCT and MVCT images by using image cumulative histograms of HU values, generating an HM-MVCT. Then, the DIR of the pCT to the HM-MVCT was performed, generating a deformed pCT. Finally, deformable dose accumulation was performed toward the pCT image. Results: The accuracy of DIR was significantly improved by using the HM algorithm, compared with non-HM method for several structures (p &plusmn;0.05, 0.83 &plusmn;0.06, and 0.90 ± 0.04 for the CTV, rectum, and bladder, respectively, while that of the HM method was 0.81 &plusmn;0.06, 0.81 &plusmn;0.04, and 0.92 &plusmn;0.06, respectively. For the deformable dose accumulation, some difference was observed between the two methods, particularly for the small calculated regions, such as rectum V60 and V70. Conclusion: Adapting the HM method can improve the accuracy of DIR. Furthermore, dose calculation using the deformed pCT using HM methods can be an effective tool for adaptive radiotherapy. 展开更多
关键词 RADIOTHERAPY TOMOTHERAPY MVct Histogram-Matching Deformable image registration
下载PDF
Sonar Image Registration and Mosaic Based on Line Detection and Triangle Matching 被引量:4
14
作者 LIU Tao ZHANG Xuguang +2 位作者 WANG Yuxi FANG Yinfeng GUO Chunsheng 《Instrumentation》 2020年第2期20-35,共16页
Image registration is an important research topic in the field of computer vision,in which the registration and mosaic of side-scan sonar images is the keypoints of underwater navigation.However,the image registration... Image registration is an important research topic in the field of computer vision,in which the registration and mosaic of side-scan sonar images is the keypoints of underwater navigation.However,the image registration method of keypoints is not suitable for sonar images which do not have obvious feature points.Therefore,a method of sonar-image registration and mosaic based on line segment extraction and triangle matching is proposed in this paper.Firstly,in order to extract features from sonar image,the LSD method is introduced to detect line feature from images,and line segments are filtered by the principle of attention;after that,triangles are formed from line segments,an image transformation matrix can be calculated through the heuristic greedy algorithm from these triangles;finally,images are merged based on the transformation information.On the basis of practical tests,it is found that,the feature extraction method used in this paper can better describe the outline of underwater terrain,and there is no obvious stitching gap between the result of sonar images stitched.Experimental results show that the proposed method is effective than the keypoints method of the registration and mosaic of sonar images. 展开更多
关键词 Sonar image image registration Line Segment Detector Triangle Matching
下载PDF
MUTUAL INFORMATION BASED 3D NON-RIGID REGISTRATION OF CT/MR ABDOMEN IMAGES
15
作者 胡海波 刘聚卑 +1 位作者 CHARLIE S.J.Xiao 庄天戈 《Journal of Shanghai Jiaotong university(Science)》 EI 2001年第2期171-175,共5页
A mutual information based 3D non-rigid registration approach was proposed for the registration of deformable CT/MR body abdomen images. The Parzen Windows Density Estimation (PWDE) method is adopted to calculate the ... A mutual information based 3D non-rigid registration approach was proposed for the registration of deformable CT/MR body abdomen images. The Parzen Windows Density Estimation (PWDE) method is adopted to calculate the mutual information between the two modals of CT and MRI abdomen images. By maximizing MI between the CT and MR volume images, the overlapping part of them reaches the biggest, which means that the two body images of CT and MR matches best to each other. Visible Human Project (VHP) Male abdomen CT and MRI Data are used as experimental data sets. The experimental results indicate that this approach of non-rigid 3D registration of CT/MR body abdominal images can be achieved effectively and automatically, without any prior processing procedures such as segmentation and feature extraction, but has a main drawback of very long computation time. 展开更多
关键词 medical image registration MULTI-MODALITY mutual information NON-RIGID Parzen window density estimation
下载PDF
An image registration method based on multi-resolution morphology contour detection
16
作者 彭向前 《Journal of Chongqing University》 CAS 2012年第2期88-96,共9页
Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was pr... Combined with the printing application,an image registration method based on the multi-resolution morphology contour detection was proposed.First,a direction based multi-resolution gray morphology in the scheme was proposed to realize the contour extraction.Then,based on the contour features,the subspace image registration was proposed to deal with issues of the computing complexity appeared in the traditional image registration methods.The proposed image registration was efficiently applied in the defect inspection of printing images. 展开更多
关键词 contour detection multi-resolution morphology image registration
下载PDF
Usability of Deformable Image Registration for Adaptive Radiotherapy in Head and Neck Cancer and an Automatic Prediction of Replanning
17
作者 Masao Tanooka Hiroshi Doi +9 位作者 Toshihisa Ishida Kazuhiro Kitajima Tsukasa Wakayama Toshiyuki Sakai Hiroyuki Inoue Noriko Kotoura Kengo Kosaka Kazuo Tarutani Masayuki Fujiwara Norihiko Kamikonya 《International Journal of Medical Physics, Clinical Engineering and Radiation Oncology》 2017年第1期10-20,共11页
Deformable image registration (DIR) has been an important component in adaptive radiotherapy (ART). Our goal was to examine the accuracy of ART using the dice similarity coefficient (DSC) and to determine the optimal ... Deformable image registration (DIR) has been an important component in adaptive radiotherapy (ART). Our goal was to examine the accuracy of ART using the dice similarity coefficient (DSC) and to determine the optimal timing of replanning. A total of 22 patients who underwent volume modulated arc therapy (VMAT) for head and neck (H&N) cancers were prospectively analyzed. The planning target volume (PTV) was to receive a total of 70 Gy in 33 fractions. A second planning CT scan (rescan) was performed at the 15th fraction. The DSC was calculated for each structure on both CT scans. The continuous variables to predict the need for replanning were assessed. The optimal cut-off value was determined using receiver operating characteristic (ROC) curve analysis. In the correlation between body weight loss and DSC of each structure, weight loss correlated negatively with DSC of the whole face (rs = -0.45) and the face surface (rs = -0.51). Patients who required replanning tended to have experienced rapid weight loss. The threshold DSC was 0.98 and 0.60 in the whole face and the face surface, respectively. Patients who showed low DSC in the whole face and the face surface required replanning at a significantly high rate (P < 0.05 and P < 0.01). Weight loss correlated with DSC in both the whole face and the face surface (P < 0.05 and P < 0.05). The DSC values in the face predicted the need for replanning. In addition, weight loss tended to correlate with DSC. DIR during ART was found to be a useful tool for replanning. 展开更多
关键词 Deformable image registration Adaptive RADIOTHERAPY Head and NECK Can-cer DICE SIMILARITY Coefficient Volume MODULATED Arc Therapy
下载PDF
Automated Registration for Infrared Image Based on Wavelet Analysis 被引量:5
18
作者 钮永胜 倪国强 《Journal of Beijing Institute of Technology》 EI CAS 2000年第1期66-72,共7页
To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation f... To develop a quick, accurate and antinoise automated image registration technique for infrared images, the wavelet analysis technique was used to extract the feature points in two images followed by the compensation for input image with angle difference between them. A hi erarchical feature matching algorithm was adopted to get the final transform parameters between the two images. The simulation results for two infrared images show that the method can effectively, quickly and accurately register images and be antinoise to some extent. 展开更多
关键词 image registration image fusion wavelet analysis infrared image processing
下载PDF
Disparity-Based Generation of Line-of-Sight DSM for Image-Elevation Co-Registration to Support Building Detection in Off-Nadir VHR Satellite Images 被引量:1
19
作者 Alaeldin Suliman Yun Zhang 《Journal of Geographic Information System》 2018年第1期25-56,共32页
The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Si... The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas. 展开更多
关键词 Stereo VHR Satellite images Off-Nadir images DISPARITY Maps ELEVATION Data CO-registration Building Detection LINE-OF-SIGHT DSM
下载PDF
A new projection model based robust 2D-3D registration method on Fourier-Mellin space for image guided intervention
20
作者 魏嵬 Jia Kebin 《High Technology Letters》 EI CAS 2013年第4期378-383,共6页
An automatic method is proposed to solve the registration problem,which aligns a single 2D fluoroscopic image to a 3D image volume without demanding any additional media like calibration plate or user interactions.Fir... An automatic method is proposed to solve the registration problem,which aligns a single 2D fluoroscopic image to a 3D image volume without demanding any additional media like calibration plate or user interactions.First,a mathematic projection model is designed which can reduce the influence of projection distortion on parameter optimization and improve the registration accuracy.Then,a two stage optimization method is proposed,which enables a robust registration in a wide parameter space.Furthermore,an automatic registration framework is proposed based on the FourierMellin robust image comparison descriptor.Experimental results show that the registration method has a high accuracy with average rotation error of 0.6 degree and average translation error of 1.4mm. 展开更多
关键词 image guided surgery 2D-3D registration digitally reconstructed radiograph (DRR) FFT
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部