<span style="font-family:Verdana;">Rationale and Objectives: Accurately establishing the diagnosis and staging of cervical and thyroid cancers is essential in medical practice in determining tumor exte...<span style="font-family:Verdana;">Rationale and Objectives: Accurately establishing the diagnosis and staging of cervical and thyroid cancers is essential in medical practice in determining tumor extension and dissemination and involves the most accurate and effective therapeutic approach. For accurate diagnosis and staging of cervical and thyroid cancers, we aim to create a diagnostic method, optimized by the algorithms of artificial intelligence and validated by achieving accurate and favorable results by conducting a clinical trial, during which we will use the diagnostic method optimized by artificial intelligence (AI) algorithms, to avoid errors, to increase the understanding on interpretation computer tomography (CT) scan, magnetic resonance imaging (MRI) of the doctor and improve therapeutic planning. Materials and Methods: The optimization of the computer assisted diagnosis (CAD) method will consist in the development and formation of artificial intelligence models, using algorithms and tools used in segmental volumetric constructions to generate 3D images from MRI/CT. We propose a comparative study of current developments in “DICOM” image processing by volume rendering technique, the use of the transfer function for opacity and color, shades of gray from “DICOM” images projected in a three-dimensional space. We also use artificial intelligence (AI), through the technique of Generative Adversarial Networks (GAN), which has proven to be effective in representing complex data distributions, as we do in this study. Validation of the diagnostic method, optimized by algorithm of artificial intelligence will consist of achieving accurate results on diagnosis and staging of cervical and thyroid cancers by conducting a randomized, controlled clinical trial, for a period of 17 months. Results: We will validate the CAD method through a clinical study and, secondly, we use various network topologies specified above, which have produced promising results in the tasks of image model recognition and by using this mixture. By using this method in medical practice, we aim to avoid errors, provide precision in diagnosing, staging and establishing the therapeutic plan in cancers of the cervix and thyroid using AI. Conclusion: The use of the CAD method can increase the quality of life by avoiding intra and postoperative complications in surgery, intraoperative orientation and the precise determination of radiation doses and irradiation zone in radiotherapy.</span>展开更多
The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images.The captured images may present with low contrast and low visibility,which migh...The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images.The captured images may present with low contrast and low visibility,which might inuence the accuracy of the diagnosis process.To overcome this problem,this paper presents a new fractional integral entropy(FITE)that estimates the unforeseeable probabilities of image pixels,posing as the main contribution of the paper.The proposed model dynamically enhances the image based on the image contents.The main advantage of FITE lies in its capability to enhance the low contrast intensities through pixels’probability.Initially,the pixel probability of the fractional power is utilized to extract the illumination value from the pixels of the image.Next,the contrast of the image is then adjusted to enhance the regions with low visibility.Finally,the fractional integral entropy approach is implemented to enhance the low visibility contents from the input image.Tests were conducted on brain MRI,lungs CT,and kidney MRI scans datasets of different image qualities to show that the proposed model is robust and can withstand dramatic variations in quality.The obtained comparative results show that the proposed image enhancement model achieves the best BRISQUE and NIQE scores.Overall,this model improves the details of brain MRI,lungs CT,and kidney MRI scans,and could therefore potentially help the medical staff during the diagnosis process.展开更多
文摘<span style="font-family:Verdana;">Rationale and Objectives: Accurately establishing the diagnosis and staging of cervical and thyroid cancers is essential in medical practice in determining tumor extension and dissemination and involves the most accurate and effective therapeutic approach. For accurate diagnosis and staging of cervical and thyroid cancers, we aim to create a diagnostic method, optimized by the algorithms of artificial intelligence and validated by achieving accurate and favorable results by conducting a clinical trial, during which we will use the diagnostic method optimized by artificial intelligence (AI) algorithms, to avoid errors, to increase the understanding on interpretation computer tomography (CT) scan, magnetic resonance imaging (MRI) of the doctor and improve therapeutic planning. Materials and Methods: The optimization of the computer assisted diagnosis (CAD) method will consist in the development and formation of artificial intelligence models, using algorithms and tools used in segmental volumetric constructions to generate 3D images from MRI/CT. We propose a comparative study of current developments in “DICOM” image processing by volume rendering technique, the use of the transfer function for opacity and color, shades of gray from “DICOM” images projected in a three-dimensional space. We also use artificial intelligence (AI), through the technique of Generative Adversarial Networks (GAN), which has proven to be effective in representing complex data distributions, as we do in this study. Validation of the diagnostic method, optimized by algorithm of artificial intelligence will consist of achieving accurate results on diagnosis and staging of cervical and thyroid cancers by conducting a randomized, controlled clinical trial, for a period of 17 months. Results: We will validate the CAD method through a clinical study and, secondly, we use various network topologies specified above, which have produced promising results in the tasks of image model recognition and by using this mixture. By using this method in medical practice, we aim to avoid errors, provide precision in diagnosing, staging and establishing the therapeutic plan in cancers of the cervix and thyroid using AI. Conclusion: The use of the CAD method can increase the quality of life by avoiding intra and postoperative complications in surgery, intraoperative orientation and the precise determination of radiation doses and irradiation zone in radiotherapy.</span>
基金funded by the Deanship of Scientic Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Progr。
文摘The enhancement of medical images is a challenging research task due to the unforeseeable variation in the quality of the captured images.The captured images may present with low contrast and low visibility,which might inuence the accuracy of the diagnosis process.To overcome this problem,this paper presents a new fractional integral entropy(FITE)that estimates the unforeseeable probabilities of image pixels,posing as the main contribution of the paper.The proposed model dynamically enhances the image based on the image contents.The main advantage of FITE lies in its capability to enhance the low contrast intensities through pixels’probability.Initially,the pixel probability of the fractional power is utilized to extract the illumination value from the pixels of the image.Next,the contrast of the image is then adjusted to enhance the regions with low visibility.Finally,the fractional integral entropy approach is implemented to enhance the low visibility contents from the input image.Tests were conducted on brain MRI,lungs CT,and kidney MRI scans datasets of different image qualities to show that the proposed model is robust and can withstand dramatic variations in quality.The obtained comparative results show that the proposed image enhancement model achieves the best BRISQUE and NIQE scores.Overall,this model improves the details of brain MRI,lungs CT,and kidney MRI scans,and could therefore potentially help the medical staff during the diagnosis process.