Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutt...Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutting tools,a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings.This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings.Moreover,cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates.Cahn-Hilliard modeling is finally utilized to consume the microstructure and service condition data to acquaint the microstructure evolution of TiAlN coatings throughout the cutting processes.This methodology effectively establishes a correlation between service temperature and its impact on the microstructure evolution of TiAlN coatings.It is expected that the present multi-scale numerical simulation approach will provide innovative strategies for assisting property design and lifespan prediction of TiAlN coatings.展开更多
The paper presents the comparison of the structures of the zirconium modified aluminide coatings deposited on pure nickel by the CVD and PVD methods. In the CVD process, zirconium was deposited from the ZrCl3 gas phas...The paper presents the comparison of the structures of the zirconium modified aluminide coatings deposited on pure nickel by the CVD and PVD methods. In the CVD process, zirconium was deposited from the ZrCl3 gas phase at the 1000°C. Zirconium thin layer (1 or 7 μm thick) and aluminum thin layer (1.0, 0.7 or 0.5 μm thick) were deposited by the EB-PVD method. Deposition velocity was about 1 ?m/min. The layers obtained by the Electron Beam Evaporation method were subjected to diffusion treatment for 2 h in the argon atmosphere. The obtained coatings were examined by the use of an optical microscope (microstructure and coating thickness) a scanning electron microscope (chemical composition on the cross-section of the modified aluminide coating) and XRD phase analysis. Microstructures and phase compositions of coatings obtained by different methods differ significantly. NiAl(Zr), Ni3Al and Ni(Al) phases were found in the CVD aluminide coatings, whereas Ni5Zr, Ni7Zr2 and γNi(Al,Zr) were observed in coatings obtained by the PVD method. The results indicate that the microstructure of the coating is strongly influenced by the method of manufacturing.展开更多
This study was an attempt made to explore the possibility of increasing the surface properties of the AZ91D magnesium alloy by applying ZrO_(2)coating using Physical Vapour Deposition(PVD-RF)sputtering process.In orde...This study was an attempt made to explore the possibility of increasing the surface properties of the AZ91D magnesium alloy by applying ZrO_(2)coating using Physical Vapour Deposition(PVD-RF)sputtering process.In order to improve the quality of the coating,the PVD process parameter with multiple performance characteristics was optimized by using the Taguchi grey approach.L 18 orthogonal array was selected for conducting the experiments.The proposed Taguchi grey method was find out the optimal process parameter for multiple performance characteristics.The optimal combination was attained at chamber pressure of 0.003 bar,argon gas in millibar and power input of 200 W.The validation experiment result shows an improvement in the micro hardness and surface finish.Also,the performance characterizations such as SEM,EDX,XRD,coating thickness,surface roughness and micro hardness were measured at optimal process parameter.展开更多
Micro-scale abrasion testing is widely used to determine the abrasion resistance of thin film coatings; it is a simple technique that can easily be used as part of a quality control procedure, but it has got the disad...Micro-scale abrasion testing is widely used to determine the abrasion resistance of thin film coatings; it is a simple technique that can easily be used as part of a quality control procedure, but it has got the disadvantage of not allowing an easy study of the wear mechanisms involved: it is difficult to estimate the load applied on each abrasive particles in the contact between the loaded ball and the specimen. The possibility of using progressive loading scratch testing, a method widely used to assess the adhesion of thin film coatings, to model the abrasive wear of coatings has been studied in the past; the use of multiple scratch tests to study the wear mechanisms corresponding to a single abrasion scratch event has also been studied in the case of bulk materials (ceramics and hard metals). Two coatings, deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) on ASP23 powder metallurgy steel substrate are chosen to be representative of the use of protective coatings in industry: titanium nitride, which is widely used to prevent tool wear, and TCL Graphit-iC?, which is widely used as a wear resistant solid lubricant coating. The two coatings are first characterised by using a standard quality control procedure: their thickness is determined by the cap grinding method, their adhesion by progressive loading scratch. Then micro-scale abrasion tests performed with a slurry at a concentration which promotes grooving wear, and medium load multiple scratch tests performed with diamond indenters are completed; the results of these tests are analysed and compared to determine if there is any correlation between the two sets of results; the multiple scratch tests wear tracks are also observed to determine the wear mechanisms involved.展开更多
Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), n...Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.展开更多
The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exh...The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.展开更多
Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ),...Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones.展开更多
Alumina-silica composite coatings were prepared on the surface of graphite paper by CVD using AlCl3/SiCl4/H2/CO2 as precursor in the temperature range of 300 to 550℃. XRD and SEM were used to examine the phase comp...Alumina-silica composite coatings were prepared on the surface of graphite paper by CVD using AlCl3/SiCl4/H2/CO2 as precursor in the temperature range of 300 to 550℃. XRD and SEM were used to examine the phase composition and the microstructure of the coating, respectively. The results indicate that the dense, uniform and adherent alumina-silica composite coating can be prepared on graphite paper substrate by CVD at 550℃ using SiCl4/AlCl3/CO2/H2. The alumina-silica composite coating is composed of a number of spherical particles. Each particle is composed of a number of fine-particle. The phase of the 550℃ composite coating includes γ-alumina containing amorphous silica. The content of Cl element in composite coating decreases with the increase of the deposition temperature. The analysis results of morphology and growth mechanisms of the CVD alumina-silica indicate that the condensation within the boundary layer will be more likely to lead to the formation of gel-particles. The gel-particles size decreases with the increase of deposition temperature in the range of 300550℃. Surface reaction is the main path to generate deposition products at 550℃.展开更多
The preliminary results of research on forming the aluminide coatings using CVD method were presented in the article. The coatings were obtained in low activity process on the surface of Rene 80 superalloy. The micros...The preliminary results of research on forming the aluminide coatings using CVD method were presented in the article. The coatings were obtained in low activity process on the surface of Rene 80 superalloy. The microstructure analysis and chemical composition analysis were performed applying different values of aluminizing process parameters. The authors present in the article the results of oxidation resistance analysis of aluminide coatings which were obtained on the surface of Rene 80 superalloy using various techniques. It was shown that the coating created during the CVD process was characterized by a good oxidation resistance at the temperature of 1100℃.展开更多
The process of preparing SiC coating by electron beam-physical vapor deposition (EB-PVD) was discussed from viewpoint of thermodynamis. Results show that within the temperature range of 2 700-3 300 K, the ratio of S...The process of preparing SiC coating by electron beam-physical vapor deposition (EB-PVD) was discussed from viewpoint of thermodynamis. Results show that within the temperature range of 2 700-3 300 K, the ratio of SiC in the SiC coating doesn't change much and keeps around 0.7. Purity of the as-deposited SiC coating is not high. To improve the purity of the SiC coating, the SiC ingot is required to not be, necessary in full density but be fine-grained.展开更多
Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion de...Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.展开更多
Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical mo...Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical models were used to investigatestress and strain states in the GTBCs and traditional two-layered TBCs as they cooledto 750℃ from a stress-free state at 850℃.展开更多
This paper deals with the evaluation of tribological properties of PVD coatings which are mainly used as wear resistance coatings. The aim of the work was to compare the tribological behaviour of TiCrN and TiAlCrN coa...This paper deals with the evaluation of tribological properties of PVD coatings which are mainly used as wear resistance coatings. The aim of the work was to compare the tribological behaviour of TiCrN and TiAlCrN coatings deposited on the steel substrate using the technology of reactive cathode vapour deposition. The dry sliding wear of coatings has been investigated against tungsten carbide (WC) counterpart. The course of the friction coefficient indicated better sliding properties TiAlCrN with value 0.605 compared to TiCrN with friction coefficient value 0.877. The depth of worn-out surface amounted to about 2/3 of the worn-out surface of TiCrN coating. The surface of the WC ball showed higher roughening after tribo test of TiCrN.展开更多
基金support from Youth Fund of the National Natural Science Foundation of China(Grant No.52101028)China Postdoctoral Science Foundation(Grant No.2021M703628)Natural Science Foundation of Hunan Province(Grant No.2022JJ40629)is acknowledged.
文摘Physical Vapor Deposited(PVD)TiAlN coatings are extensively utilized as protective layers for cutting tools,renowned for their excellent comprehensive performance.To optimize quality control of TiAlN coatings for cutting tools,a multi-scale simulation approach is proposed that encompasses the microstructure evolution of coatings considering the entire preparation and service lifecycle of PVD TiAlN coatings.This scheme employs phase-field simulation to capture the essential microstructure of the PVD-prepared TiAlN coatings.Moreover,cutting simulation is used to determine the service temperature experienced during cutting processes at varying rates.Cahn-Hilliard modeling is finally utilized to consume the microstructure and service condition data to acquaint the microstructure evolution of TiAlN coatings throughout the cutting processes.This methodology effectively establishes a correlation between service temperature and its impact on the microstructure evolution of TiAlN coatings.It is expected that the present multi-scale numerical simulation approach will provide innovative strategies for assisting property design and lifespan prediction of TiAlN coatings.
基金The presented research was supported by the National Science Centre,Poland,project number 2011/01/DST8/05/036
文摘The paper presents the comparison of the structures of the zirconium modified aluminide coatings deposited on pure nickel by the CVD and PVD methods. In the CVD process, zirconium was deposited from the ZrCl3 gas phase at the 1000°C. Zirconium thin layer (1 or 7 μm thick) and aluminum thin layer (1.0, 0.7 or 0.5 μm thick) were deposited by the EB-PVD method. Deposition velocity was about 1 ?m/min. The layers obtained by the Electron Beam Evaporation method were subjected to diffusion treatment for 2 h in the argon atmosphere. The obtained coatings were examined by the use of an optical microscope (microstructure and coating thickness) a scanning electron microscope (chemical composition on the cross-section of the modified aluminide coating) and XRD phase analysis. Microstructures and phase compositions of coatings obtained by different methods differ significantly. NiAl(Zr), Ni3Al and Ni(Al) phases were found in the CVD aluminide coatings, whereas Ni5Zr, Ni7Zr2 and γNi(Al,Zr) were observed in coatings obtained by the PVD method. The results indicate that the microstructure of the coating is strongly influenced by the method of manufacturing.
基金supported by DRDO Extramural funding agency,IndiaThe authors thank the organization for their financial support with grant no:1103981/M/01/1480 to this work.
文摘This study was an attempt made to explore the possibility of increasing the surface properties of the AZ91D magnesium alloy by applying ZrO_(2)coating using Physical Vapour Deposition(PVD-RF)sputtering process.In order to improve the quality of the coating,the PVD process parameter with multiple performance characteristics was optimized by using the Taguchi grey approach.L 18 orthogonal array was selected for conducting the experiments.The proposed Taguchi grey method was find out the optimal process parameter for multiple performance characteristics.The optimal combination was attained at chamber pressure of 0.003 bar,argon gas in millibar and power input of 200 W.The validation experiment result shows an improvement in the micro hardness and surface finish.Also,the performance characterizations such as SEM,EDX,XRD,coating thickness,surface roughness and micro hardness were measured at optimal process parameter.
文摘Micro-scale abrasion testing is widely used to determine the abrasion resistance of thin film coatings; it is a simple technique that can easily be used as part of a quality control procedure, but it has got the disadvantage of not allowing an easy study of the wear mechanisms involved: it is difficult to estimate the load applied on each abrasive particles in the contact between the loaded ball and the specimen. The possibility of using progressive loading scratch testing, a method widely used to assess the adhesion of thin film coatings, to model the abrasive wear of coatings has been studied in the past; the use of multiple scratch tests to study the wear mechanisms corresponding to a single abrasion scratch event has also been studied in the case of bulk materials (ceramics and hard metals). Two coatings, deposited by Closed Field Unbalanced Magnetron Sputter Ion Plating (CFUBMSIP) on ASP23 powder metallurgy steel substrate are chosen to be representative of the use of protective coatings in industry: titanium nitride, which is widely used to prevent tool wear, and TCL Graphit-iC?, which is widely used as a wear resistant solid lubricant coating. The two coatings are first characterised by using a standard quality control procedure: their thickness is determined by the cap grinding method, their adhesion by progressive loading scratch. Then micro-scale abrasion tests performed with a slurry at a concentration which promotes grooving wear, and medium load multiple scratch tests performed with diamond indenters are completed; the results of these tests are analysed and compared to determine if there is any correlation between the two sets of results; the multiple scratch tests wear tracks are also observed to determine the wear mechanisms involved.
基金Project(50571005) supported by the National Natural Science Foundation of China.Acknowledgement The authors would like to thank ZH0U Chun-gen for prolitable discussion about SEM/EDS analysis.
文摘Magnetron sputtered (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings grown on cemented carbide substrates were studied by using energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy(SEM), nanoindentation, Rockwell A indentation test, strength measurements and cutting tests. The results show that the (Ti, Al)N monolayer and TiN/(Ti, Al)N multilayer coatings perform good affinity to substrate, and the TiN/(Ti, Al)N multilayer coating exhibits higher hardness, higher toughness and better cutting performance compared with the (Ti, Al)N monolayer coating. Moreover, the strength measurement indicates that the physical vapour deposition (PVD) coating has no effect on the substrate strength.
文摘The performances of gradient thermal barrier coatings (GTBCs) produced by EB-PVD were evaluated by isothermal oxidation and cyclic hot corrosion (HTHC) tests. Compared with conventional two-layered TBCs, the GTBCs exhibite better resistance to not only oxidation but also hot-corrosion. A dense Al2O3 layer in the GTBCs effectively prohibites inward diffusion of O and S and outward diffusion of Al and Cr during the tests. On the other hand, an "inlaid" interface, resulting from oxidation of the Al along the columnar grains of the bond coat, enhances the adherence of AI2O3 layer. Failure of the GTBC finally occurred by cracking at the interface between the bond coat and AI2O3 layer, due to the combined effect of sulfidation of the bond coat and thermal cvcling.
基金National Natural Science Foundation of China (50571005)
文摘Thermal barrier coatings (TBCs) were developed to protect metallic blades and vanes working in turbo-engines. The two-layered structure TBCs, consisting of NiCoCrAlY bond coat and yttria stabilized zirconia (YSZ), were deposited on a cylinder of superalloy substrate by the electron beam-physical vapor deposition (EB-PVD). The failure mechanism of the TBCs was investigated with a thermo-mechanical fatigue testing system under the service condition similar to that for turbine blades. Non-destructive evaluation of the coated specimens was conducted through the impedance spectroscopy. It is found that the crack initiation mainly takes place on the top coat at the edge of the heated zones.
文摘Alumina-silica composite coatings were prepared on the surface of graphite paper by CVD using AlCl3/SiCl4/H2/CO2 as precursor in the temperature range of 300 to 550℃. XRD and SEM were used to examine the phase composition and the microstructure of the coating, respectively. The results indicate that the dense, uniform and adherent alumina-silica composite coating can be prepared on graphite paper substrate by CVD at 550℃ using SiCl4/AlCl3/CO2/H2. The alumina-silica composite coating is composed of a number of spherical particles. Each particle is composed of a number of fine-particle. The phase of the 550℃ composite coating includes γ-alumina containing amorphous silica. The content of Cl element in composite coating decreases with the increase of the deposition temperature. The analysis results of morphology and growth mechanisms of the CVD alumina-silica indicate that the condensation within the boundary layer will be more likely to lead to the formation of gel-particles. The gel-particles size decreases with the increase of deposition temperature in the range of 300550℃. Surface reaction is the main path to generate deposition products at 550℃.
文摘The preliminary results of research on forming the aluminide coatings using CVD method were presented in the article. The coatings were obtained in low activity process on the surface of Rene 80 superalloy. The microstructure analysis and chemical composition analysis were performed applying different values of aluminizing process parameters. The authors present in the article the results of oxidation resistance analysis of aluminide coatings which were obtained on the surface of Rene 80 superalloy using various techniques. It was shown that the coating created during the CVD process was characterized by a good oxidation resistance at the temperature of 1100℃.
文摘The process of preparing SiC coating by electron beam-physical vapor deposition (EB-PVD) was discussed from viewpoint of thermodynamis. Results show that within the temperature range of 2 700-3 300 K, the ratio of SiC in the SiC coating doesn't change much and keeps around 0.7. Purity of the as-deposited SiC coating is not high. To improve the purity of the SiC coating, the SiC ingot is required to not be, necessary in full density but be fine-grained.
基金supported by the Key Project of Chinese Academy of Sciences(No.KJCX2-YW-N35)National Natural Science Foundation of China(No.11175205)
文摘Chemical vapor deposition-tungsten (CVD-W) coating covering the surface of the plasma facing component (PFC) is an effective method to implement the tungsten material as plasma facing material (PFM) in fusion devices. Residual thermal stress in CVD-W coating due to thermal mismatch between coating and substrate was successfully simulated by using a finite element method (ANSYS 10.0 code). The deposition parametric effects, i.e., coating thickness and deposition temperature, and interlayer were investigated to get a description of the residual thermal stress in the CVD-W coating-substrate system. And the influence of the substrate materials on the generation of residual thermal stress in the CVD-W coating was analyzed with respect to the CVD-W coating application as PFM. This analysis is beneficial for the preparation and application of CVD-W coating.
基金sponsored by the National Natural Science Foundation of China(NSFC)Specialized Research Fund for the Doctoral Program of Higher Education of China(SRFDP).
文摘Gradient thermal barrier coatings (GTBCs) produced by co-deposition of mixtures ofAl-Al2 O3-YSZ onto metallic bond coat exhibited longer lifetimes than the two-layeredTBCs. The finite element method (FEM) numerical models were used to investigatestress and strain states in the GTBCs and traditional two-layered TBCs as they cooledto 750℃ from a stress-free state at 850℃.
基金the national project VEGA 2/0070/17 and APVV-14-0834.
文摘This paper deals with the evaluation of tribological properties of PVD coatings which are mainly used as wear resistance coatings. The aim of the work was to compare the tribological behaviour of TiCrN and TiAlCrN coatings deposited on the steel substrate using the technology of reactive cathode vapour deposition. The dry sliding wear of coatings has been investigated against tungsten carbide (WC) counterpart. The course of the friction coefficient indicated better sliding properties TiAlCrN with value 0.605 compared to TiCrN with friction coefficient value 0.877. The depth of worn-out surface amounted to about 2/3 of the worn-out surface of TiCrN coating. The surface of the WC ball showed higher roughening after tribo test of TiCrN.