Carbon nanotubes (CNTs) have potential applications in many fields, chemical vapor deposition (CVD) is an effective method for CNTs preparation. By CVD, the catalytic pyrolysis temperature, pyrolysis time and the size...Carbon nanotubes (CNTs) have potential applications in many fields, chemical vapor deposition (CVD) is an effective method for CNTs preparation. By CVD, the catalytic pyrolysis temperature, pyrolysis time and the size of the raw gas flow have a great influence on yield rate of CNTs and their form. In this paper, the orthogonal experiment analysis method is used for studying the influence factors of yield rate of CNTs. Research results show that, in the suitable temperature range of preparing CNTs, there is relatively more CNTs with excellent morphology, otherwise, if the temperature is too low, the growth of CNTs will not be sufficient; if the temperature is too high, then CNTs will be generated with excessive defects; with longer growth time of suitable pyrolysis of CNTs, higher yield of CNTs will be obtained; CNTs morphology with reaction time is not proportional; too low or too high raw gas flow rate is not conducive to the growth of CNTs. We have found the optimum conditions for the CNTs preparation: pyrolysis temperature 68 degrees C, pyrolysis time 35 min, propylene flow rate of 180 mL/min. The results have a reference value for the preparation of CNTS and their composites.展开更多
The paper presents the comparison of the structures of the zirconium modified aluminide coatings deposited on pure nickel by the CVD and PVD methods. In the CVD process, zirconium was deposited from the ZrCl3 gas phas...The paper presents the comparison of the structures of the zirconium modified aluminide coatings deposited on pure nickel by the CVD and PVD methods. In the CVD process, zirconium was deposited from the ZrCl3 gas phase at the 1000°C. Zirconium thin layer (1 or 7 μm thick) and aluminum thin layer (1.0, 0.7 or 0.5 μm thick) were deposited by the EB-PVD method. Deposition velocity was about 1 ?m/min. The layers obtained by the Electron Beam Evaporation method were subjected to diffusion treatment for 2 h in the argon atmosphere. The obtained coatings were examined by the use of an optical microscope (microstructure and coating thickness) a scanning electron microscope (chemical composition on the cross-section of the modified aluminide coating) and XRD phase analysis. Microstructures and phase compositions of coatings obtained by different methods differ significantly. NiAl(Zr), Ni3Al and Ni(Al) phases were found in the CVD aluminide coatings, whereas Ni5Zr, Ni7Zr2 and γNi(Al,Zr) were observed in coatings obtained by the PVD method. The results indicate that the microstructure of the coating is strongly influenced by the method of manufacturing.展开更多
Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loa...Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time.展开更多
Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubes (MWCNT) can be got...Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubes (MWCNT) can be got when the catalyst is directly used to synthesize the product in CH 4/H 2 atmosphere; however, the dispersed carbon nanotubes are obtained while the catalyst is reduced firstly in the H 2 before the synthesis. The morphology and structure of the catalysts before and after reduced are analyzed by TEM and XRD. The growth mechanism is suggeested for the formation off these two kinds of carbon nanotubes.展开更多
基金Funded by Beijing Excellent Talents Training Program(No.2014000020124G072)
文摘Carbon nanotubes (CNTs) have potential applications in many fields, chemical vapor deposition (CVD) is an effective method for CNTs preparation. By CVD, the catalytic pyrolysis temperature, pyrolysis time and the size of the raw gas flow have a great influence on yield rate of CNTs and their form. In this paper, the orthogonal experiment analysis method is used for studying the influence factors of yield rate of CNTs. Research results show that, in the suitable temperature range of preparing CNTs, there is relatively more CNTs with excellent morphology, otherwise, if the temperature is too low, the growth of CNTs will not be sufficient; if the temperature is too high, then CNTs will be generated with excessive defects; with longer growth time of suitable pyrolysis of CNTs, higher yield of CNTs will be obtained; CNTs morphology with reaction time is not proportional; too low or too high raw gas flow rate is not conducive to the growth of CNTs. We have found the optimum conditions for the CNTs preparation: pyrolysis temperature 68 degrees C, pyrolysis time 35 min, propylene flow rate of 180 mL/min. The results have a reference value for the preparation of CNTS and their composites.
基金The presented research was supported by the National Science Centre,Poland,project number 2011/01/DST8/05/036
文摘The paper presents the comparison of the structures of the zirconium modified aluminide coatings deposited on pure nickel by the CVD and PVD methods. In the CVD process, zirconium was deposited from the ZrCl3 gas phase at the 1000°C. Zirconium thin layer (1 or 7 μm thick) and aluminum thin layer (1.0, 0.7 or 0.5 μm thick) were deposited by the EB-PVD method. Deposition velocity was about 1 ?m/min. The layers obtained by the Electron Beam Evaporation method were subjected to diffusion treatment for 2 h in the argon atmosphere. The obtained coatings were examined by the use of an optical microscope (microstructure and coating thickness) a scanning electron microscope (chemical composition on the cross-section of the modified aluminide coating) and XRD phase analysis. Microstructures and phase compositions of coatings obtained by different methods differ significantly. NiAl(Zr), Ni3Al and Ni(Al) phases were found in the CVD aluminide coatings, whereas Ni5Zr, Ni7Zr2 and γNi(Al,Zr) were observed in coatings obtained by the PVD method. The results indicate that the microstructure of the coating is strongly influenced by the method of manufacturing.
基金Funded by the National Natural Science Foundation of China(No.51165006)the Universities in Hubei Province Outstanding Young Scientific and Technological Innovation Team(No.T201626)
文摘Carbon nanotubes(CNTs) were synthesized by the electric heating catalytic chemical deposition method(CCVD) using acetylene(C2H2) as the carbon source and nitrogen(N2) as carrier gas,and nickel catalyst was loaded by electroplating.The electric heating method,as a new method,electrifies the carbon fiber directly by using its conductivity.The morphology and structure of CNTs were characterized by SEM and TEM,and the surface properties of carbon fibers before and after the growth of CNT were characterized by Raman spectroscopy.The experimental results show that the electric heating method is a new method to produce CNT,and can grow a large number of CNTs in a short time,the crystallization degree and surface average crystallite size of carbon fiber increased after the growth of CNT on it.In addition,electroplating loading catalyst can also be used as an ideal loading way,which can control the number,shape,and distribution of nickel particles by controlling the plating time.
文摘Fe-Mo-Mg-O catalyst prepared by combustion method has great efficiency to grow carbon nanotubes with CVD method. Through investigation of TEM, it is found that bundles of multi-wall carbon nanotubes (MWCNT) can be got when the catalyst is directly used to synthesize the product in CH 4/H 2 atmosphere; however, the dispersed carbon nanotubes are obtained while the catalyst is reduced firstly in the H 2 before the synthesis. The morphology and structure of the catalysts before and after reduced are analyzed by TEM and XRD. The growth mechanism is suggeested for the formation off these two kinds of carbon nanotubes.