A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CW...A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.展开更多
In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property ...In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property is of paramount importance in practical applications,where many studied phenomena can be regarded as small perturbations to the steady state.To achieve the well-balanced property,we construct numerical fluxes by means of a decomposition algorithm based on a novel equilibrium preserving reconstruction procedure and we avoid applying the traditional hydrostatic reconstruction technique accordingly.This decomposition algorithm also helps us realize a simple source term discretization.Both rigorous theoretical analysis and extensive numerical examples all verify that the proposed scheme maintains the well-balanced property exactly.Furthermore,extensive numerical results strongly suggest that the resulting scheme can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions at the same time.展开更多
We propose a new characteristic-based finite volume scheme combined with the method of Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction and characteristics, to solve shallow water equations. We ap...We propose a new characteristic-based finite volume scheme combined with the method of Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction and characteristics, to solve shallow water equations. We apply the scheme to simulate dam-break problems. A number of challenging test cases are considered, such as large depth differences even wet/dry bed. The numerical solutions well agree with the analytical solutions. The results demonstrate the desired accuracy, high-resolution and robustness of the presented scheme.展开更多
基金the National Natural Science Foundation of China (60134010)The English text was polished by Yunming Chen.
文摘A fourth-order relaxation scheme is derived and applied to hyperbolic systems of conservation laws in one and two space dimensions. The scheme is based on a fourthorder central weighted essentially nonoscillatory (CWENO) reconstruction for one-dimensional cases, which is generalized to two-dimensional cases by the dimension-by-dimension approach. The large stability domain Runge-Kutta-type solver ROCK4 is used for time integration. The resulting method requires neither the use of Riemann solvers nor the computation of Jacobians and therefore it enjoys the main advantage of the relaxation schemes. The high accuracy and high-resolution properties of the present method are demonstrated in one- and two-dimensional numerical experiments.
基金supported by the Natural Science Foundation of Shandong Province(Grant No.ZR2021MA072)supported by the Natural Science Foundation of China(Grant No.11771228)+1 种基金supported by the Qinglan Project of Jiangsu Province,the XJTLU research enhancement fund(No.REF-18-01-04)the Key Programme Special Fund(KSF)in XJTLU(Nos.KSF-E-32 and KSF-E-21).
文摘In this article,we develop a new well-balanced finite volume central weighted essentially non-oscillatory(CWENO)scheme for one-and two-dimensional shallow water equations over uneven bottom.The well-balanced property is of paramount importance in practical applications,where many studied phenomena can be regarded as small perturbations to the steady state.To achieve the well-balanced property,we construct numerical fluxes by means of a decomposition algorithm based on a novel equilibrium preserving reconstruction procedure and we avoid applying the traditional hydrostatic reconstruction technique accordingly.This decomposition algorithm also helps us realize a simple source term discretization.Both rigorous theoretical analysis and extensive numerical examples all verify that the proposed scheme maintains the well-balanced property exactly.Furthermore,extensive numerical results strongly suggest that the resulting scheme can accurately capture small perturbations to the steady state and keep the genuine high-order accuracy for smooth solutions at the same time.
基金supported by the National Natural Science Foundation of China (Grant No.10771134)the Natural Science Foundation of Anhui Province (Grant No. 090416227)
文摘We propose a new characteristic-based finite volume scheme combined with the method of Central Weighted Essentially Non-Oscillatory (CWENO) reconstruction and characteristics, to solve shallow water equations. We apply the scheme to simulate dam-break problems. A number of challenging test cases are considered, such as large depth differences even wet/dry bed. The numerical solutions well agree with the analytical solutions. The results demonstrate the desired accuracy, high-resolution and robustness of the presented scheme.