Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterize...Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men.展开更多
Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells ...Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.展开更多
Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in man...Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.The Editors-in-Chief therefore no longer have confidence in the integrity of the data in this article and decided to retract this article.展开更多
Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM ...Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM by examining gene expression patterns and biological pathways in both mouse and human RM models.Meanwhile,explore relevant traditional Chinese medicine(TCM)components targeting potential therapeutic targets.Methods:We utilized the GSE211251 mouse and the GSE26787 human datasets,employing gene set enrichment analysis and gene metaphysics analysis to examine differentially expressed genes and enriched pathways.Single-cell RNA analysis uncovered cellular heterogeneity and arranged pharmacology-mapped potential drug-target intelligence.We employed molecular docking strategies to assess the affinity of TCM components for key proteins.Results:In the mouse model,genes such as Ly6f1 and Gpr26 were upregulated,while Stc5a and Galca exhibited downregulation.Gene set enrichment analysis identified key pathways,including the tumor necrosis factor-mediated signaling pathway.In human samples,Gene Ontology analysis highlighted processes such as apoptosis and cell adhesion.Single-cell RNA analysis revealed distinct cellular populations between normal and RM samples.Systems pharmacology identified C-X-C motif chemokine receptor 4(CXCR4)and endothelin 1(EDN1)as potential key targets,and molecular docking confirmed that stearic acid from TCM appears to regulate these proteins.Conclusion:This study presents a comprehensive analysis of the genetic and cellular underpinnings of RM,identifying CXCR4 and EDN1 as promising therapeutic targets.Stearic acid from TCM could provide targeted treatment by modulating these key proteins,paving the way for new RM treatment strategies.展开更多
基金supported by a grant from the French Multiple Sclerosis Society(ARSEP,Grant Number:R20163LL)(to AMG)。
文摘Multiple sclerosis(MS)is the most common chronic disease of the central nervous system(CNS)in young adults and represents the first cause of severe handicap,originally non-traumatic(Oh et al.,2018).MS is chara cterized by the infiltration of auto reactive lymphocytes specific to myelin through the blood-brain barrier,which results in the appearance of inflammatory demyelinating lesions caused by the death of the central nervous system myelinating cells,oligodendrocytes(Oh et al.,2018).There is a prevalence sexual with a ratio of three times more affected women than men.
基金supported by the National Natural Science Foundation of China,Nos.82271397(to MG),82001293(to MG),82171355(to RX),81971295(to RX),and 81671189(to RX)。
文摘Microglial activation that occurs rapidly after closed head injury may play important and complex roles in neuroinflammation-associated neuronal damage and repair.We previously reported that induced neural stem cells can modulate the behavior of activated microglia via CXCL12/CXCR4 signaling,influencing their activation such that they can promote neurological recovery.However,the mechanism of CXCR4 upregulation in induced neural stem cells remains unclear.In this study,we found that nuclear factor-κB activation induced by closed head injury mouse serum in microglia promoted CXCL12 and tumor necrosis factor-αexpression but suppressed insulin-like growth factor-1 expression.However,recombinant complement receptor 2-conjugated Crry(CR2-Crry)reduced the effects of closed head injury mouse serum-induced nuclear factor-κB activation in microglia and the levels of activated microglia,CXCL12,and tumor necrosis factor-α.Additionally,we observed that,in response to stimulation(including stimulation by CXCL12 secreted by activated microglia),CXCR4 and Crry levels can be upregulated in induced neural stem cells via the interplay among CXCL12/CXCR4,Crry,and Akt signaling to modulate microglial activation.In agreement with these in vitro experimental results,we found that Akt activation enhanced the immunoregulatory effects of induced neural stem cell grafts on microglial activation,leading to the promotion of neurological recovery via insulin-like growth factor-1 secretion and the neuroprotective effects of induced neural stem cell grafts through CXCR4 and Crry upregulation in the injured cortices of closed head injury mice.Notably,these beneficial effects of Akt activation in induced neural stem cells were positively correlated with the therapeutic effects of induced neural stem cells on neuronal injury,cerebral edema,and neurological disorders post–closed head injury.In conclusion,our findings reveal that Akt activation may enhance the immunoregulatory effects of induced neural stem cells on microglial activation via upregulation of CXCR4 and Crry,thereby promoting induced neural stem cell–mediated improvement of neuronal injury,cerebral edema,and neurological disorders following closed head injury.
文摘Following the publication,concerns have been raised about a number of figures in this article.The western blots in this article were presented with atypical,unusually shaped and possibly anomalous protein bands in many cases.The authors were contacted and invited to comment on the concerns raised and to provide the original,unmodified figures,but did not respond.The Editors-in-Chief therefore no longer have confidence in the integrity of the data in this article and decided to retract this article.
基金support from the Ningxia Hui Autonomous Region Key Research and Development Program(Project No.2021BEG03041).
文摘Background:Recurrent miscarriage(RM)affects an estimated 1-3%of couples attempting to conceive,and its molecular components stay ineffectively caught on.This study aims to explore potential therapeutic targets for RM by examining gene expression patterns and biological pathways in both mouse and human RM models.Meanwhile,explore relevant traditional Chinese medicine(TCM)components targeting potential therapeutic targets.Methods:We utilized the GSE211251 mouse and the GSE26787 human datasets,employing gene set enrichment analysis and gene metaphysics analysis to examine differentially expressed genes and enriched pathways.Single-cell RNA analysis uncovered cellular heterogeneity and arranged pharmacology-mapped potential drug-target intelligence.We employed molecular docking strategies to assess the affinity of TCM components for key proteins.Results:In the mouse model,genes such as Ly6f1 and Gpr26 were upregulated,while Stc5a and Galca exhibited downregulation.Gene set enrichment analysis identified key pathways,including the tumor necrosis factor-mediated signaling pathway.In human samples,Gene Ontology analysis highlighted processes such as apoptosis and cell adhesion.Single-cell RNA analysis revealed distinct cellular populations between normal and RM samples.Systems pharmacology identified C-X-C motif chemokine receptor 4(CXCR4)and endothelin 1(EDN1)as potential key targets,and molecular docking confirmed that stearic acid from TCM appears to regulate these proteins.Conclusion:This study presents a comprehensive analysis of the genetic and cellular underpinnings of RM,identifying CXCR4 and EDN1 as promising therapeutic targets.Stearic acid from TCM could provide targeted treatment by modulating these key proteins,paving the way for new RM treatment strategies.