SiC窑具材料浸渍Ca3(PO4)2与AlPO4混合饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性,延长其使用寿命.浸渍次数越多,氧化速度越小.浸渍1~4次的氧化速度常数比值为:Ki混:K2混:K3混:K4混=1.44×10-7:1.16 x 10...SiC窑具材料浸渍Ca3(PO4)2与AlPO4混合饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性,延长其使用寿命.浸渍次数越多,氧化速度越小.浸渍1~4次的氧化速度常数比值为:Ki混:K2混:K3混:K4混=1.44×10-7:1.16 x 10-7:1.02×10 7:0.87×107=1.66:1.33:1.1 7:1,浸渍混合饱和溶液的抗氧化能力比浸渍Ca3(PO4)2饱和溶液强.展开更多
The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration...The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3PO4 and Ca(HzPO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient (Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)z'MgCIz'8H20 in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC.展开更多
A novel single-phase Sm^3+activated Ca5(PO4)2SiO4 phosphor was successfully fabricated via a conventional solid-state method,which can be e fficie ntly excited by near ultraviolet(n-UV)light-emitting chips.The crystal...A novel single-phase Sm^3+activated Ca5(PO4)2SiO4 phosphor was successfully fabricated via a conventional solid-state method,which can be e fficie ntly excited by near ultraviolet(n-UV)light-emitting chips.The crystal structure and luminescence properties were characterized and analyzed systematically by using relevant instruments.The Ca5(PO4)2SiO4:Sm^3+phosphor shows an orange-red emission peaking at600 nm under the excitation of 403 nm and the optimal doping concentration of Sm^3+is determined to be 0.08,The critical distance of Ca5(PO4)2SiO4:0.08 Sm^3+is calculated to be 1.849 nm and concentration quenching mechanism of the Sm^3+in Ca5(PO4)2SiO4 host is ascribed to energy transfer between nearestneighbor activators.The decay time of Ca5(PO4)2 SiO4:0,08 Sm^3+is determined to be 1.1957 ms.In addition,the effect of temperature on the emission intensity was also studied,72.4%of the initial intensity is still preserved at 250℃,better thermal stability compared to commercial phosphor YAG:Ce^3+indicates that Ca5(PO4)2SiO4:0.08 Sm^3+has excellent thermal stability and active energy is deduced to be 0.130 eV.All the results demonstrate that orange-red emitting Ca5(PO4)2SiO4:0.08 Sm3+phosphor exhibits good luminescent properties.Owing to the excellent thermal quenching luminescence property,Ca5(PO4)2SiO4:0.08 Sm^3+phosphor can be applied in n-UV white light emitting diodes and serve as the warm part of white light.展开更多
文摘SiC窑具材料浸渍Ca3(PO4)2与AlPO4混合饱和溶液,能填充气孔,降低气孔率,阻碍O2的扩散,能增加SiC窑具抗氧化性,延长其使用寿命.浸渍次数越多,氧化速度越小.浸渍1~4次的氧化速度常数比值为:Ki混:K2混:K3混:K4混=1.44×10-7:1.16 x 10-7:1.02×10 7:0.87×107=1.66:1.33:1.1 7:1,浸渍混合饱和溶液的抗氧化能力比浸渍Ca3(PO4)2饱和溶液强.
基金The National Natural Science Foundation of China(No.50902042)the Natural Science Foundation of Hebei Province,China(Nos.A2014201035,E2014201037)the Education Office Research Foundation of Hebei Province,China(Nos.ZD2014036,QN2014085)
基金Project(B0210)supported by One Hundred Talent Project of Chinese Academy of SciencesProject(2008-G-158)supported by Science and Technology Tackling Key Program of Qinghai Province,China
文摘The effects of H3PO4 and Ca(H2PO4)2 on compressive strength, water resistance, hydration process of thermally decomposed magnesium oxychloride cement (TDMOC) pastes were studied. The mineral composition, hydration products and hydration heat release were analyzed by XRD, FT-IR, SEM and TAM air isothermal calorimeter, etc. After being modified by H3PO4 and Ca(HzPO4)2, the properties of the TDMOC are improved obviously. The compressive strength increases from 14.8 MPa to 48.1 MPa and 37.1 MPa, respectively. The strength retention coefficient (Kn) increases from 0.38 to 0.99 and 0.94, respectively. The 24 h hydration heat release decreases by 10% and 4% and the time of hydration peak appearing is delayed from 1 h to about 10 h. The XRD, FT-IR and SEM results show that the main composition is 5Mg(OH)z'MgCIz'8H20 in the modified TDMOC pastes. The possible mechanism for the strength enhancement was discussed. The purposes are to extend the potential applications of the salt lake magnesium resources and to improve the mechanical properties of TDMOC.
基金supported by the Research Foundation for Youth Scholars of Beijing Technology and Business University (QNJJ2019-06,PXM2019_014213_000007)
文摘A novel single-phase Sm^3+activated Ca5(PO4)2SiO4 phosphor was successfully fabricated via a conventional solid-state method,which can be e fficie ntly excited by near ultraviolet(n-UV)light-emitting chips.The crystal structure and luminescence properties were characterized and analyzed systematically by using relevant instruments.The Ca5(PO4)2SiO4:Sm^3+phosphor shows an orange-red emission peaking at600 nm under the excitation of 403 nm and the optimal doping concentration of Sm^3+is determined to be 0.08,The critical distance of Ca5(PO4)2SiO4:0.08 Sm^3+is calculated to be 1.849 nm and concentration quenching mechanism of the Sm^3+in Ca5(PO4)2SiO4 host is ascribed to energy transfer between nearestneighbor activators.The decay time of Ca5(PO4)2 SiO4:0,08 Sm^3+is determined to be 1.1957 ms.In addition,the effect of temperature on the emission intensity was also studied,72.4%of the initial intensity is still preserved at 250℃,better thermal stability compared to commercial phosphor YAG:Ce^3+indicates that Ca5(PO4)2SiO4:0.08 Sm^3+has excellent thermal stability and active energy is deduced to be 0.130 eV.All the results demonstrate that orange-red emitting Ca5(PO4)2SiO4:0.08 Sm3+phosphor exhibits good luminescent properties.Owing to the excellent thermal quenching luminescence property,Ca5(PO4)2SiO4:0.08 Sm^3+phosphor can be applied in n-UV white light emitting diodes and serve as the warm part of white light.