Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experi...Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.展开更多
In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechani...In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.展开更多
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w...This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.展开更多
This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosph...This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.展开更多
The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0...The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.展开更多
The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)in...The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%.展开更多
The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experime...The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2016YFB0701202,No.2017YFB0701500 and No.2020YFB1505901)National Natural Science Foundation of China(General Program No.51474149,52072240)+3 种基金Shanghai Science and Technology Committee(No.18511109300)Science and Technology Commission of the CMC(2019JCJQZD27300)financial support from the University of Michigan and Shanghai Jiao Tong University joint funding,China(AE604401)Science and Technology Commission of Shanghai Municipality(No.18511109302).
文摘Magnesium(Mg)alloys have shown great prospects as both structural and biomedical materials,while poor corrosion resistance limits their further application.In this work,to avoid the time-consuming and laborious experiment trial,a high-throughput computational strategy based on first-principles calculations is designed for screening corrosion-resistant binary Mg alloy with intermetallics,from both the thermodynamic and kinetic perspectives.The stable binary Mg intermetallics with low equilibrium potential difference with respect to the Mg matrix are firstly identified.Then,the hydrogen adsorption energies on the surfaces of these Mg intermetallics are calculated,and the corrosion exchange current density is further calculated by a hydrogen evolution reaction(HER)kinetic model.Several intermetallics,e.g.Y_(3)Mg,Y_(2)Mg and La_(5)Mg,are identified to be promising intermetallics which might effectively hinder the cathodic HER.Furthermore,machine learning(ML)models are developed to predict Mg intermetallics with proper hydrogen adsorption energy employing work function(W_(f))and weighted first ionization energy(WFIE).The generalization of the ML models is tested on five new binary Mg intermetallics with the average root mean square error(RMSE)of 0.11 eV.This study not only predicts some promising binary Mg intermetallics which may suppress the galvanic corrosion,but also provides a high-throughput screening strategy and ML models for the design of corrosion-resistant alloy,which can be extended to ternary Mg alloys or other alloy systems.
基金supported by the National Natural Science Foundation of China(Nos.51974082,51901037)State Key Laboratory of Baiyunobo Rare Earth Resource Research and Comprehensive Utilization(No.2021H2279)Programme of Introducing Talents of Discipline Innovation to Universities 2.0(the 111 Project 2.0 of China,No.BP0719037).
文摘In this study,the extruded Mg-Zn-Mn-Ce-Ca alloy tube with a low compression anisotropy along the ED,45ED and TD was prepared.The effect of the second phases,initial texture and deformation behavior on this low mechanical anisotropy was investigated.The results revealed that the alloy tube contains the high content(Mg1-xZnx)11Ce phase and the low content of Mg12Ce phase.These second phases are respectively incoherent and coherent with the Mg matrix,and their influence can be ignored.Additionally,the alloy tube exhibited a weak basal fiber texture,where the c-axis was aligned along the 0°∼30°tilt from TD to ED.Such a texture made the initial deformation(at 1.0%∼1.6%strain)of the three samples controlled by comparable basalslip.As deformation progressed(1.6∼9.0%strain),larger amounts of ETWs nucleated and gradually approached saturation in the three samples,re-orienting the c-axis to a 0°∼±30°deviation with respect to the loading directions.Meanwhile,the prismatic and pyramidal<c+a>slips replaced the dominant deformation progressively until fracture.Eventually,the similar deformation mechanisms determined by the weak initial texture in the three samples contribute to the comparable strain hardening rates,resulting in the low compressive anisotropy of the alloy tube.
基金supported by the National Key Research and Development Program of China(No.2021YFE0115900)the National Natural Science Foundation of China(Nos.52371016,51871029,and 51571023)the Opening Project of State Key Laboratory for Advanced Metals and Materials(Nos.2020-ZD02 and No.2022-Z03).
文摘This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys.
文摘This study is a contribution to improving rice productivity on acidic plateau soils of the tropical rainforest zone. It is based on taking into account the cationic balances of the soil in order to optimize the phosphorus (P) nutrition of rice on these acidic soils, where this nutrient constitutes a limiting factor for agricultural production. Three (3) pot trials were conducted in Adiopodoumé in the forested south of Côte d’Ivoire. The interactive effects of calcium carbonate (0, 25, 50 and 75 kg Ca ha<sup>−1</sup>) and magnesium sulfate (0, 25, 50 and 75 kg Mg ha<sup>−1</sup>) were evaluated on the response of NERICA 5 rice at doses 0, 25, 50 and 75 kg P ha<sup>−1</sup> of natural phosphate from Togo, applied only once at the start of the experiment. Additional fertilizers of nitrogen (N) (100 kg N ha<sup>−1</sup>) and potassium (K) (50 kg KCl ha<sup>−1</sup>) were added to each of the tests in a split-plot device. The test results revealed a paddy production potential of approximately 3 to 5 t⋅ha<sup>−1</sup> for NERICA 5 on an acidic soil, under the effect of the interaction of P, Ca and Mg. The quadratic response of rice yield to the doses of these fertilizers would be more dependent on their balance, itself influenced by Ca nutrition. For the sustainability and maintenance of rice production in agro-ecology studied, it was recommended doses of 38 kg Ca ha<sup>−1</sup>, 34 kg Mg ha<sup>−1</sup> in a Ca/Mg ratio (1/1) with intakes of 41 kg P ha<sup>−1</sup>, overall in a ratio 1/1/1 (P/Ca/Mg) more favorable to the availability of free iron considered a guiding element of mineral nutrition. Thus, these promising results should be confirmed in a real environment for better management of the fertilization of rice cultivated on acidic plateau soils in Côte d’Ivoire.
基金the support from the National Natural Science Foundation of China(No.52271177)the Science and Technology Innovation Leaders Projects in Hunan Province,China(No.2021RC4036).
文摘The impact of cold rolling deformation,which was introduced after solid solution and before aging treatment,on microstructure evolution and mechanical properties of the as-extruded spray formed Al−9.8Zn−2.3Mg−1.73Cu−0.13Cr(wt.%)alloy,was investigated.SEM,TEM,and EBSD were used to analyze the microstructures,and tensile tests were conducted to assess mechanical properties.The results indicate that the D1-T6 sample,subjected to 25%cold rolling deformation,exhibits finer grains(3.35μm)compared to the D0-T6 sample(grain size of 4.23μm)without cold rolling.Cold rolling refines the grains that grow in solution treatment.Due to the combined effects of finer and more dispersed precipitates,higher dislocation density and smaller grains,the yield strength and ultimate tensile strength of the D1-T6 sample can reach 663 and 737 MPa,respectively.In comparison to the as-extruded and D0-T6 samples,the yield strength of the D1-T6 sample increases by 415 and 92 MPa,respectively.
基金Financial supports from the National Natural Science Foundation of China (No.52071343)the Leading Innovation and Entrepreneurship Team of Zhejiang Province,China—Automotive Light Alloy Innovation Team (No.2022R01018)are gratefully acknowledged。
文摘The microstructures and mechanical properties were systematically studied for the high-strength Al−5Mg_(2)Si−1.5Ni alloy fabricated by laser powder bed fusion(L-PBF).It is found that the introduction of Ni(1.5 wt.%)into an Al−5Mg_(2)Si alloy can significantly improve the L-PBF processibility and provide remarkable improvement in mechanical properties.The solidification range of just 85.5 K and the typical Al−Al3Ni eutectics could be obtained in the Ni-modified Al−5Mg_(2)Si samples with a high relative density of 99.8%at the volumetric energy density of 107.4 J/mm^(3).Additionally,the refined hierarchical microstructure was mainly characterized by heterogeneousα-Al matrix grains(14.6μm)that contain the interaction between dislocations and Al−Al3Ni eutectics as well as Mg_(2)Si particles.Through synergetic effects of grain refinement,dislocation strengthening and precipitation strengthening induced by Ni addition,the L-PBFed Al−5Mg_(2)Si−1.5Ni alloy achieved superior mechanical properties,which included the yield strength of(425±15)MPa,the ultimate tensile strength of(541±11)MPa and the elongation of(6.2±0.2)%.
基金financially supported by the Natural Science Foundation of Ningbo,China (No.2023J053)。
文摘The microstructure and mechanical properties of as-cast Al−Cu−Li−Mg−Zn alloys fabricated by conventional gravity casting and centrifugal casting techniques combined with rapid solidification were investigated.Experimental results demonstrated that compared with the gravity casting technique,the water-cooling centrifugal casting technique significantly reduces porosity,refinesα(Al)grains and secondary phases,modifies the morphology of secondary phases,and mitigates both macro-and micro-segregation.These improvements arise from the synergistic effects of the vigorous backflow,centrifugal field,vibration and rapid solidification.Porosity and coarse plate-like Al13Fe4/Al7Cu2Fe phase result in the fracture before the gravity-cast alloy reaches the yield point.The centrifugal-cast alloy,however,exhibits an ultra-high yield strength of 292.0 MPa and a moderate elongation of 6.1%.This high yield strength is attributed to solid solution strengthening(SSS)of 225.3 MPa,and grain boundary strengthening(GBS)of 35.7 MPa.Li contributes the most to SSS with a scaling factor of 7.9 MPa·wt.%^(-1).The elongation of the centrifugal-cast alloy can be effectively enhanced by reducing the porosity and segregation behavior,refining the microstructure and changing the morphology of secondary phases.