Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmenta...Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2oC intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as: (-0.0575Ta2+2.6691Ta-23.264)I A= ——————————————— (-0.00766Ta2+0.40666Ta-3.99924) (-4.8794Ta2+227.13Ta-2456.9)+I展开更多
采用盆栽土培法,对31个甘蓝品种苗期生长对铜胁迫的耐性及铜吸收和积累的差异进行了研究。结果表明,400 m g.kg-1Cu2+处理下,不同基因型甘蓝的耐性及吸收、积累铜的能力具有显著差异。地上部干重的抑制率变幅为-25.0%~95.7%,铜对地上部...采用盆栽土培法,对31个甘蓝品种苗期生长对铜胁迫的耐性及铜吸收和积累的差异进行了研究。结果表明,400 m g.kg-1Cu2+处理下,不同基因型甘蓝的耐性及吸收、积累铜的能力具有显著差异。地上部干重的抑制率变幅为-25.0%~95.7%,铜对地上部的抑制作用大于根系。根系Cu2+含量变幅为212~893 m g.k-g 1,地上部变幅为32~87 m g.kg-1,根系Cu2+含量显著高于地上部;根系Cu2+积累量变幅为5~78μg/盒,地上部变幅为8~116μg/盒。地上部Cu2+含量与地上部抑制率呈极显著的正相关。根据聚类结果,31个甘蓝品种分成3类,平均地上部干重抑制率分别为76.0%、40.3%和-2.1%,表明其分别属于铜敏感型、中间型和耐性型。展开更多
Plant mineral nutrition is essential for crop yields and human health.However,the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants.Among the...Plant mineral nutrition is essential for crop yields and human health.However,the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants.Among the essential nutrients,calcium(Ca^(2+))stands out as a prominent second messenger that plays crucial roles in response to extracellular stimuli in all eukaryotes.Distinct Ca^(2+)signatures with unique parameters are induced by different stresses and deciphered by various Ca^(2+)sensors.Recent research on the participation of Ca^(2+)signaling in regulation of mineral elements has made great progress.In this review,we focus on the impact of Ca^(2+)signaling on plant mineral uptake and detoxification.Specifically,we emphasize the significance of Ca^(2+)signaling for regulation of plant mineral nutrition and delve into key points and novel avenues for future investigations,aiming to offer new insights into plant ion homeostasis.展开更多
There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca2+-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from th...There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca2+-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from the fast-relaxing phase was investigated for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius in vitro, in comparison to the single exponential model and the classical bi-exponential model. During repetitive stimulations at a 2-s interval by square pulses of a 2-ms duration at 12 V direct currency (DC), the isometric tension of Bufo gastrocnemius was recorded at 100 Hz. The relaxation curve with tensions falling from 90% of the peak to the 15th datum before next stimulation was analyzed by three exponential models using a program in MATLAB 6.5. Both the goodness of fit and the distribution of the residuals for the best fitting sup- ported the comparable validity of this new bi-exponential model for kinetic analysis of the relaxation process of the control muscles. After CPA treatment, however, this new bi-exponential model showed an obvious statistical superiority for kinetic analysis of the muscle relaxation process, and it gave the estimated rest tension consistent to that by experimentation, whereas both the classical bi-exponential model and the single exponential model gave biased rest tensions. Moreover, after the treatment of muscles by CPA, both the single exponential model and the classical bi-exponential model yielded lowered relaxation rates, nevertheless, this new bi-exponential model had relaxation rates of negligible changes except much higher rest tensions. These results suggest that this novel linearly-combined bi-exponential model is desirable for kinetic analysis of the relaxation process of muscles with altered Ca2+-pumping activity.展开更多
In this study,an anaerobic/anoxic/oxic(A^(2)O)wastewater treatment process was implemented to treat domestic wastewater with short-term atrazine addition.The results provided an evaluation on the effects of an acciden...In this study,an anaerobic/anoxic/oxic(A^(2)O)wastewater treatment process was implemented to treat domestic wastewater with short-term atrazine addition.The results provided an evaluation on the effects of an accidental pollution on the operation of a wastewater treatment plant(WWTP)in relation to Chemical Oxygen Demand(COD)and biological nutrient removal.Domestic wastewater with atrazine addition in 3 continuous days was treated when steady biological nutrient removal was achieved in the A^(2)O process.The concentrations of atrazine were 15,10,and 5 mg%L–1 on days 1,2 and 3,respectively.The results showed that atrazine addition did not affect the removal of COD.The specific NH4þoxidation rate and NO3–reduction rate decreased slightly due to the short-term atrazine addition.However,it did not affect the nitrogen removal due to the high nitrification and denitrification capacity of the system.Total nitrogen(TN)removal was steady,and more than 70%was removed during the period studied.The phosphorus removal rate was not affected by the short-term addition of atrazine under the applied experimental conditions.However,more poly-hydroxy-alkanoate(PHA)was generated and utilized during atrazine addition.The results of the oxygen uptake rate(OUR)showed that the respiration of nitrifiers decreased significantly,while the activity of carbon utilizers had no obvious change with the atrazine addition.Atrazine was not removed with the A^(2)O process,even via absorption by the activated sludge in the process of the short-term addition of atrazine.展开更多
文摘Since trees and plants can absorb CO2, forests are widely regarded as a carbon sink that may control the amount of CO2 in the atmosphere. The CO2 uptake rate of plants is affected by the plant species and environmental conditions such as photosynthetically active radiation (PAR), temperature, water and nutrient contents. PAR is the most immediate environmental control on photosynthesis while air temperature affects both photorespiration and dark respiration. In the natural condition, PAR and temperature play an important role in net CO2 uptake. The effects of PAR and air temperature on the CO2 uptake of Pterocarpus macrocarpus grown in a natural habitat were studied in the present work. Due to many uncontrollable factors, a simple rectangular hyperbola could not represent the measured data. The data were divided into groups of 2oC intervals; CO2 uptake in each group may then be related to PAR by a rectangular hyperbola function. Using the obtained functions, the effect of PAR was removed from the original data. The PAR-independent CO2 uptake was then related to air temperature. Finally, the effects of PAR (I) and air temperature (Ta) on the CO2 uptake rate (A) were combined as: (-0.0575Ta2+2.6691Ta-23.264)I A= ——————————————— (-0.00766Ta2+0.40666Ta-3.99924) (-4.8794Ta2+227.13Ta-2456.9)+I
文摘采用盆栽土培法,对31个甘蓝品种苗期生长对铜胁迫的耐性及铜吸收和积累的差异进行了研究。结果表明,400 m g.kg-1Cu2+处理下,不同基因型甘蓝的耐性及吸收、积累铜的能力具有显著差异。地上部干重的抑制率变幅为-25.0%~95.7%,铜对地上部的抑制作用大于根系。根系Cu2+含量变幅为212~893 m g.k-g 1,地上部变幅为32~87 m g.kg-1,根系Cu2+含量显著高于地上部;根系Cu2+积累量变幅为5~78μg/盒,地上部变幅为8~116μg/盒。地上部Cu2+含量与地上部抑制率呈极显著的正相关。根据聚类结果,31个甘蓝品种分成3类,平均地上部干重抑制率分别为76.0%、40.3%和-2.1%,表明其分别属于铜敏感型、中间型和耐性型。
基金supported by the National Natural Science Foundation of China(32222008 to C.W.)the China Postdoctoral Science Foundation(2023M732883 to C.J.).
文摘Plant mineral nutrition is essential for crop yields and human health.However,the uneven distribution of mineral elements over time and space leads to a lack or excess of available mineral elements in plants.Among the essential nutrients,calcium(Ca^(2+))stands out as a prominent second messenger that plays crucial roles in response to extracellular stimuli in all eukaryotes.Distinct Ca^(2+)signatures with unique parameters are induced by different stresses and deciphered by various Ca^(2+)sensors.Recent research on the participation of Ca^(2+)signaling in regulation of mineral elements has made great progress.In this review,we focus on the impact of Ca^(2+)signaling on plant mineral uptake and detoxification.Specifically,we emphasize the significance of Ca^(2+)signaling for regulation of plant mineral nutrition and delve into key points and novel avenues for future investigations,aiming to offer new insights into plant ion homeostasis.
基金Project supported by the National Natural Science Foundation of China (No. 30472139)the Education Commission for the First Batch of Excellent Young Teachers in Universities of Chongqing City, China
文摘There was a slow-relaxing tail of skeletal muscles in vitro upon the inhibition of Ca2+-pump by cyclopiazonic acid (CPA). Herein, a new linearly-combined bi-exponential model to resolve this slow-relaxing tail from the fast-relaxing phase was investigated for kinetic analysis of the isometric relaxation process of Bufo gastrocnemius in vitro, in comparison to the single exponential model and the classical bi-exponential model. During repetitive stimulations at a 2-s interval by square pulses of a 2-ms duration at 12 V direct currency (DC), the isometric tension of Bufo gastrocnemius was recorded at 100 Hz. The relaxation curve with tensions falling from 90% of the peak to the 15th datum before next stimulation was analyzed by three exponential models using a program in MATLAB 6.5. Both the goodness of fit and the distribution of the residuals for the best fitting sup- ported the comparable validity of this new bi-exponential model for kinetic analysis of the relaxation process of the control muscles. After CPA treatment, however, this new bi-exponential model showed an obvious statistical superiority for kinetic analysis of the muscle relaxation process, and it gave the estimated rest tension consistent to that by experimentation, whereas both the classical bi-exponential model and the single exponential model gave biased rest tensions. Moreover, after the treatment of muscles by CPA, both the single exponential model and the classical bi-exponential model yielded lowered relaxation rates, nevertheless, this new bi-exponential model had relaxation rates of negligible changes except much higher rest tensions. These results suggest that this novel linearly-combined bi-exponential model is desirable for kinetic analysis of the relaxation process of muscles with altered Ca2+-pumping activity.
基金the National Key Science and Technology Special Projects(No.2008ZX07209-003)Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality(No.PHR20090502).
文摘In this study,an anaerobic/anoxic/oxic(A^(2)O)wastewater treatment process was implemented to treat domestic wastewater with short-term atrazine addition.The results provided an evaluation on the effects of an accidental pollution on the operation of a wastewater treatment plant(WWTP)in relation to Chemical Oxygen Demand(COD)and biological nutrient removal.Domestic wastewater with atrazine addition in 3 continuous days was treated when steady biological nutrient removal was achieved in the A^(2)O process.The concentrations of atrazine were 15,10,and 5 mg%L–1 on days 1,2 and 3,respectively.The results showed that atrazine addition did not affect the removal of COD.The specific NH4þoxidation rate and NO3–reduction rate decreased slightly due to the short-term atrazine addition.However,it did not affect the nitrogen removal due to the high nitrification and denitrification capacity of the system.Total nitrogen(TN)removal was steady,and more than 70%was removed during the period studied.The phosphorus removal rate was not affected by the short-term addition of atrazine under the applied experimental conditions.However,more poly-hydroxy-alkanoate(PHA)was generated and utilized during atrazine addition.The results of the oxygen uptake rate(OUR)showed that the respiration of nitrifiers decreased significantly,while the activity of carbon utilizers had no obvious change with the atrazine addition.Atrazine was not removed with the A^(2)O process,even via absorption by the activated sludge in the process of the short-term addition of atrazine.